Skip to main content
Log in

Smoking Accelerates Atrioventricular Conduction in Humans Concordant with Increased Dopamine Release

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Smoking is associated with cardiac arrhythmia, stroke, heart failure, and sudden cardiac arrest, all of which may derive from increased sympathetic influence on cardiac conduction system and altered ventricular repolarization. However, knowledge of the effects of smoking on supraventricular conduction, and the role of the sympathetic nervous system in them, remains incomplete. Participants with intermediate-high cardiovascular disease risk were measured for urinary catecholamines and cotinine, and 12-lead electrocardiograms (ECGs) were measured for atrial and atrioventricular conduction times, including P duration, PR interval, and PR segment (lead II), which were analyzed for associations with cotinine by generalized linear models. Statistical mediation analyses were then used to test whether any significant associations between cotinine and atrioventricular conduction were mediated by catecholamines. ECG endpoints and urinary metabolites were included from a total of 136 participants in sinus rhythm. Atrial and atrioventricular conduction did not significantly differ between smokers (n = 53) and non-smokers (n = 83). Unadjusted and model-adjusted linear regressions revealed cotinine significantly and inversely associated with PR interval and PR segment, but not P duration. Dopamine, norepinephrine, and epinephrine all inversely associated with PR interval, whereas only dopamine was also inversely associated with PR segment (p < 0.05). Dopamine and norepinephrine (but not epinephrine) also associated positively with cotinine. Dopamine mediated the relationship between cotinine and PR interval, as well as the relationship between cotinine and PR segment. Smoking is associated with accelerated atrioventricular conduction and elevated urinary dopamine and norepinephrine. Smoking may accelerate atrioventricular nodal conduction via increased dopamine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldenberg, I., Moss, A. J., McNitt, S., et al. (2006). Cigarette smoking and the risk of supraventricular and ventricular tachyarrhythmias in high-risk cardiac patients with implantable cardioverter defibrillators. Journal of Cardiovascular Electrophysiology, 17(9), 931–936.

    PubMed  Google Scholar 

  2. Haass, M., & Kubler, W. (1997). Nicotine and sympathetic neurotransmission. Cardiovascular Drugs and Therapy, 10(6), 657–665.

    CAS  PubMed  Google Scholar 

  3. Klein, L. W., Ambrose, J., Pichard, A., Holt, J., Gorlin, R., & Teichholz, L. E. (1984). Acute coronary hemodynamic response to cigarette smoking in patients with coronary artery disease. Journal of the American College of Cardiology, 3(4), 879–886.

    CAS  PubMed  Google Scholar 

  4. Carll, A. P., Farraj, A. K., & Roberts, A. M. (2018). The role of the autonomic nervous system in cardiovascular toxicity. In M. J. Campen (Ed.), Comprehensive toxicology (3rd ed.). Oxford: Elsevier.

    Google Scholar 

  5. Dinas, P. C., Koutedakis, Y., & Flouris, A. D. (2013). Effects of active and passive tobacco cigarette smoking on heart rate variability. International Journal of Cardiology, 163(2), 109–115.

    PubMed  Google Scholar 

  6. Dilaveris, P., Pantazis, A., Gialafos, E., Triposkiadis, F., & Gialafos, J. (2001). The effects of cigarette smoking on the heterogeneity of ventricular repolarization. American Heart Journal, 142(5), 833–837.

    CAS  PubMed  Google Scholar 

  7. Fauchier, L., Maison-Blanche, P., Forhan, A., et al. (2000). Association between heart rate-corrected QT interval and coronary risk factors in 2,894 healthy subjects (the DESIR Study). Data from an Epidemiological Study on the Insulin Resistance syndrome. The American Journal of Cardiology, 86(5), 557–559.

    CAS  PubMed  Google Scholar 

  8. Ileri, M., Yetkin, E., Tandogan, I., et al. (2001). Effect of habitual smoking on QT interval duration and dispersion. American Journal of Cardiology, 88(3), 322–325.

    CAS  Google Scholar 

  9. Zhang, Y., Post, W. S., Dalal, D., Blasco-Colmenares, E., Tomaselli, G. F., & Guallar, E. (2011). Coffee, alcohol, smoking, physical activity and QT interval duration: Results from the Third National Health and Nutrition Examination Survey. PLoS ONE, 6(2), e17584.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nielsen, J. B., Pietersen, A., Graff, C., et al. (2013). Risk of atrial fibrillation as a function of the electrocardiographic PR interval: Results from the Copenhagen ECG Study. Heart Rhythm, 10(9), 1249–1256.

    PubMed  Google Scholar 

  11. Soliman, E. Z., Cammarata, M., & Li, Y. (2014). Explaining the inconsistent associations of PR interval with mortality: The role of P-duration contribution to the length of PR interval. Heart Rhythm, 11(1), 93–98.

    PubMed  Google Scholar 

  12. Watanabe, I. (2018). Smoking and risk of atrial fibrillation. Journal of Cardiology, 71(2), 111–112.

    PubMed  Google Scholar 

  13. DeJarnett, N., Conklin, D. J., Riggs, D. W., et al. (2014). Acrolein exposure is associated with increased cardiovascular disease risk. Journal of the American Heart Association, 3(4), e000934.

    PubMed  PubMed Central  Google Scholar 

  14. Goldberger, A. L. (2012). Electrocardiography. In F. A. Longo, S. L. Hauser, J. L. Jameons, & J. Loscalzo (Eds.), Harrison's principles of internal medicine (18th ed.). New York: McGraw-Hill.

    Google Scholar 

  15. Salles, G., Xavier, S., Sousa, A., Hasslocher-Moreno, A., & Cardoso, C. (2003). Prognostic value of QT interval parameters for mortality risk stratification in Chagas' disease: Results of a long-term follow-up study. Circulation, 108(3), 305–312.

    PubMed  Google Scholar 

  16. Benowitz, N. L., Hukkanen, J., & Jacob, P., III. (2009). Nicotine chemistry, metabolism, kinetics and biomarkers. Handbook of Experimental Pharmacology, 192, 29–60.

    CAS  Google Scholar 

  17. Man, C. N., Gam, L. H., Ismail, S., Lajis, R., & Awang, R. (2006). Simple, rapid and sensitive assay method for simultaneous quantification of urinary nicotine and cotinine using gas chromatography-mass spectrometry. The Journal of Chromatography B, 844(2), 322–327.

    CAS  Google Scholar 

  18. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717–731.

    Google Scholar 

  19. Sharma, N. K., Jaiswal, K. K., Meena, S. R., et al. (2017). ECG changes in young healthy smokers: A simple and cost-effective method to assess cardiovascular risk according to pack-years of smoking. Journal of the Association of Physicians of India, 65(6), 26–30.

    Google Scholar 

  20. Chatterjee, S., Kumar, S., Dey, S. K., & Chatterjee, P. (1989). Chronic effect of smoking on the electrocardiogram. Japanese Heart Journal, 30(6), 827–839.

    CAS  PubMed  Google Scholar 

  21. Metta, S., Uppala, S., & Joyarani, D. (2015). Study of ECG changes and left ventricular diastolic dysfunction as hemodynamic markers of myocardial stress in chronic smokers. International Journal of Research in Medical Sciences, 3(3), 588–592.

    Google Scholar 

  22. Srivastava, A., Poonia, A., Shekhar, S., & Tewari, R. P. (2012). A comparative study of electrocardiographic changes between non smokers and smokers. International Journal of Computer Science Engineering & Technology, 2(5), 1231.

    Google Scholar 

  23. Castro-Torres, Y., Carmona-Puerta, R., & Castañeda-Carsarvilla, L. (2017). Increased maximum p wave duration in smoking patients with ST-elevation acute myocardial infarction and its relationship with inflammatory markers. Cor et Vasa, 59(3), e246–e250.

    Google Scholar 

  24. Baden, L., Weiss, S. T., Thomas, H. E., Jr., & Sparrow, D. (1982). Smoking status and the electrocardiogram: A cross-sectional and longitudinal study. Archives of Environmental Health, 37(6), 365–369.

    CAS  PubMed  Google Scholar 

  25. Venkatesh, G., & Swamy, R. M. (2010). A study of electrocardiographic changes in smokers compared to normal human beings. Biomedcal Research, 21(4), 389–392.

    Google Scholar 

  26. Goette, A., Lendeckel, U., Kuchenbecker, A., et al. (2007). Cigarette smoking induces atrial fibrosis in humans via nicotine. Heart, 93(9), 1056–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Holmqvist, F., Thomas, K. L., Broderick, S., et al. (2015). Clinical outcome as a function of the PR-interval-there is virtue in moderation: Data from the Duke Databank for cardiovascular disease. Europace, 17(6), 978–985.

    PubMed  Google Scholar 

  28. Harvey, R. D., & Belevych, A. E. (2003). Muscarinic regulation of cardiac ion channels. British Journal of Pharmacology, 139(6), 1074–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fowler, J. S., Logan, J., Wang, G. J., & Volkow, N. D. (2003). Monoamine oxidase and cigarette smoking. Neurotoxicology, 24(1), 75–82.

    CAS  PubMed  Google Scholar 

  30. Launay, J. M., Del Pino, M., Chironi, G., et al. (2009). Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS ONE, 4(11), e7959.

    PubMed  PubMed Central  Google Scholar 

  31. Zimmerman, M., & McGeachie, J. (1987). The effect of nicotine on aortic endothelium. A quantitative ultrastructural study. Atherosclerosis, 63(1), 33–41.

    CAS  PubMed  Google Scholar 

  32. Goette, A. (2009). Nicotine, atrial fibrosis, and atrial fibrillation: Do microRNAs help to clear the smoke? Cardiovascular Research, 83(3), 421–422.

    CAS  PubMed  Google Scholar 

  33. Wang, H., Shi, H., Zhang, L., et al. (2000). Nicotine is a potent blocker of the cardiac A-type K(+) channels. Effects on cloned Kv4.3 channels and native transient outward current. Circulation, 102(10), 1165–1171.

    CAS  PubMed  Google Scholar 

  34. Bianchi, C., Diaz, R., Gonzales, C., & Beregovich, J. (1975). Effects of dobutamine on atrioventricular conduction. American Heart Journal, 90(4), 474–478.

    CAS  PubMed  Google Scholar 

  35. Tisdale, J. E., Patel, R., Webb, C. R., Borzak, S., & Zarowitz, B. J. (1995). Electrophysiologic and proarrhythmic effects of intravenous inotropic agents. Progress in Cardiovascular Diseases, 38(2), 167–180.

    CAS  PubMed  Google Scholar 

  36. Karolewicz, B., Klimek, V., Zhu, H., et al. (2005). Effects of depression, cigarette smoking, and age on monoamine oxidase B in amygdaloid nuclei. Brain Research, 1043(1–2), 57–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Snider, S. R., & Kuchel, O. (1983). Dopamine: an important neurohormone of the sympathoadrenal system. Significance of increased peripheral dopamine release for the human stress response and hypertension. Endocrine Review, 4(3), 291–309.

    CAS  Google Scholar 

  38. Hawkins, B. T., Abbruscato, T. J., Egleton, R. D., et al. (2004). Nicotine increases in vivo blood-brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Research, 1027(1–2), 48–58.

    CAS  PubMed  Google Scholar 

  39. Motomura, S., & Hashimoto, K. (1992). Beta 2-adrenoceptor-mediated positive dromotropic effects on atrioventricular node of dogs. American Journal of Physiology, 262(1 Pt 2), H123–129.

    CAS  Google Scholar 

  40. Karjalainen, J., Reunanen, A., Ristola, P., & Viitasalo, M. (1997). QT interval as a cardiac risk factor in a middle aged population. Heart, 77(6), 543–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Luceri, R. M., Brownstein, S. L., Vardeman, L., & Goldstein, S. (1990). PR interval behavior during exercise: Implications for physiological pacemakers. Pacing and Clinical Electrophysiology, 13(12 Pt 2), 1719–1723.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Karen Beatty, Jessica Nystoriak, and Dan Riggs for technical support and assistance in ECG procurement.

Funding

Research reported in this publication was supported by the National Heart, Lung, And Blood Institute (NHLBI) of the National Institutes of Health (award numbers R01HL147343, HL071739, R01HL147343, N01-HC-95159, and N01-HC-95169), the AHA Tobacco Regulation and Addiction Center (A-TRAC), and FDA Center for Tobacco Products (CTP) (P50HL120163). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. C.A. was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Concept/design: ABI, AB, APC. Data analysis/interpretation: ABI, AB, APC. Drafting article: ABI, AB, APC, APD. Critical revision of article: ABI, AB, APC, APD. Data collection: ABI, CA, PL, ZX, APC.

Corresponding author

Correspondence to Alex P. Carll.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Additional information

Handling Editor: Rajiv Janardhanan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, A.B., Arab, C., DeFilippis, A.P. et al. Smoking Accelerates Atrioventricular Conduction in Humans Concordant with Increased Dopamine Release. Cardiovasc Toxicol 21, 169–178 (2021). https://doi.org/10.1007/s12012-020-09610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09610-5

Keywords

Navigation