Skip to main content
Log in

Interactive Effects of Omega-3 Polyunsaturated Fatty Acids and Secondhand Smoke in Mice and Human Subjects

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Active smoking and secondhand smoke (SHS) exposure increase the risk of cardiovascular morbidity and mortality. Active smoking is associated with reduced levels of omega-3 polyunsaturated fatty acids (n-3 PUFA) and studies show that n-3 PUFA supplementation can improve smoking-induced vascular dysfunction. However, the relationship between n-3 PUFA and SHS exposure has not been studied. Fat-1 transgenic mice, which convert n-6 to n-3 PUFA, were fed diets with n-3 PUFA or without (n-6 PUFA diet), exposed to air or SHS for 4 weeks, and vasoreactivity, antioxidant indices, and omega-3 index (percent eicosapentaenoic + docosahexaenoic acids in RBC) measured. Compared to air-exposed mice, SHS-enhanced aortic constriction in mice fed the n-6 PUFA diet (omega-3 index, 5.9 ± 0.2%; mean ± SE), but not in mice fed the n-3 PUFA diet (omega-3 index, 7.8 ± 0.6%). SHS also significantly induced mRNA expression of cytochrome P4501A1, NADPH:quinone oxidoreductase, heme oxygenase-1, and angiotensinogen in adipose tissue, and increased antioxidant capacity only in mice on the n-6 PUFA diet. Notably, SHS reduced the omega-3 index by 1.0 percentage point (p = 0.003), compared to air-exposed mice irrespective of diet. Additionally, we recruited human nonsmokers (NS) with and without SHS exposure (n = 40) 19–40 years old and measured the omega-3 index and antioxidant capacity. In human subjects SHS exposure was associated with a significantly lower omega-3 index (NS, 4.4 ± 1.1%; NS + SHS, 3.2 ± 1.0%; mean ± SD, p = 0.002) and higher antioxidant capacity (p < 0.001) than unexposed NS. Thus, SHS exposure is associated with lower levels of n-3 PUFA in mice and humans; however, an omega-3 index of ~ 8% in mice has vasoprotective and antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Upon acceptance of this manuscript, the data presented herein will be deposited in the University of New Mexico Digital Repository https://digitalrepository.unm.edu/

References

  1. Lv, X., Sun, J., Bi, Y., Xu, M., Lu, J., Zhao, L., et al. (2015). Risk of all-cause mortality and cardiovascular disease associated with secondhand smoke exposure: a systematic review and meta-analysis. International Journal of Cardiology, 199, 106–115.

    PubMed  Google Scholar 

  2. Adams, T., Wan, E., Wei, Y., Wahab, R., Castagna, F., Wang, G., et al. (2015). Secondhand smoking is associated with vascular inflammation. Chest, 148, 112–119.

    PubMed  PubMed Central  Google Scholar 

  3. Celermajer, D. S., Adams, M. R., Clarkson, P., Robinson, J., McCredie, R., Donald, A., et al. (1996). Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. New England Journal of Medicine, 334, 150–154.

    CAS  Google Scholar 

  4. Raitakari, O. T., Adams, M. R., McCredie, R. J., Griffiths, K. A., & Celermajer, D. S. (1999). Arterial endothelial dysfunction related to passive smoking is potentially reversible in healthy young adults. Annals of Internal Medicine, 130, 578–581.

    CAS  PubMed  Google Scholar 

  5. Woo, K. S., Chook, P., Leong, H. C., Huang, X. S., & Celermajer, D. S. (2000). The impact of heavy passive smoking on arterial endothelial function in modernized Chinese. Journal of the American College of Cardiology, 36, 1228–1232.

    CAS  PubMed  Google Scholar 

  6. Holay, M. P., Paunikar, N. P., Joshi, P. P., Sahasrabhojney, V. S., & Tankhiwale, S. R. (2004). Effect of passive smoking on endothelial function in healthy adults. Journal of the Association of Physicians of India, 52, 114–117.

    CAS  Google Scholar 

  7. Kallio, K., Jokinen, E., Saarinen, M., Hamalainen, M., Volanen, I., Kaitosaari, T., et al. (2010). Arterial intima-media thickness, endothelial function, and apolipoproteins in adolescents frequently exposed to tobacco smoke. Circ Cardiovasc Qual Outcomes, 3, 196–203.

    PubMed  Google Scholar 

  8. Adkins, Y., & Kelley, D. S. (2010). Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. Journal of Nutritional Biochemistry, 21, 781–792.

    CAS  Google Scholar 

  9. Wiest, E. F., Walsh-Wilcox, M. T., & Walker, M. K. (2017). Omega-3 polyunsaturated fatty acids protect against cigarette smoke-induced oxidative stress and vascular dysfunction. Toxicological Sciences, 156, 300–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Din, J. N., Archer, R. M., Harding, S. A., Sarma, J., Lyall, K., Flapan, A. D., et al. (2012). Effect of omega-3 fatty acid supplementation on endothelial function, endogenous fibrinolysis and platelet activation in male cigarette smokers. Heart, 99, 168–174.

    PubMed  Google Scholar 

  11. Siasos, G., Tousoulis, D., Oikonomou, E., Zaromitidou, M., Verveniotis, A., Plastiras, A., et al. (2011). Effects of Omega-3 fatty acids on endothelial function, arterial wall properties, inflammatory and fibrinolytic status in smokers: A cross over study. International Journal of Cardiology, 166, 340–346.

    PubMed  Google Scholar 

  12. Fenton, J. I., Gurzell, E. A., Davidson, E. A., & Harris, W. S. (2016). Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukotrienes and Essential Fatty Acids, 112, 12–23.

    CAS  Google Scholar 

  13. Harris, W. S., Pottala, J. V., Lacey, S. M., Vasan, R. S., Larson, M. G., & Robins, S. J. (2012). Clinical correlates and heritability of erythrocyte eicosapentaenoic and docosahexaenoic acid content in the Framingham Heart Study. Atherosclerosis, 225, 425–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Flock, M. R., Skulas-Ray, A. C., Harris, W. S., Etherton, T. D., Fleming, J. A., & Kris-Etherton, P. M. (2013). Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: A dose-response randomized controlled trial. Journal of American Heart Association, 2, e000513.

    Google Scholar 

  15. Block, R. C., Harris, W. S., & Pottala, J. V. (2008). Determinants of blood cell omega-3 fatty acid content. Open Biomark J, 1, 1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Murff, H. J., Tindle, H. A., Shrubsole, M. J., Cai, Q., Smalley, W., Milne, G. L., et al. (2016). Smoking and red blood cell phospholipid membrane fatty acids. Prostaglandins Leukotrienes and Essential Fatty Acids, 112, 24–31.

    CAS  Google Scholar 

  17. Simon, J. A., Fong, J., Bernert, J. T., Jr., & Browner, W. S. (1996). Relation of smoking and alcohol consumption to serum fatty acids. American Journal of Epidemiology, 144, 325–334.

    CAS  PubMed  Google Scholar 

  18. Wiest, E. F., Warneke, A., Walsh, M. T., Langsfeld, M., Anderson, J., & Walker, M. K. (2015). Association of serum aryl hydrocarbon receptor activity and RBC omega-3 polyunsaturated fatty acids with flow-mediated dilation in healthy, young Hispanic cigarette smokers. Toxicology Letters, 232, 422–428.

    CAS  PubMed  Google Scholar 

  19. Ionescu, N., de Freitas, C., & Bueno, A. A. (2013). Perturbations in blood phosphatidylcholine and sphingomyelin fatty acid composition in a sample population of cigarette smokers. Indian Journal of Clinical Biochemistry, 28, 361–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang, J. X., Wang, J., Wu, L., & Kang, Z. B. (2004). Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature, 427, 504.

    CAS  PubMed  Google Scholar 

  21. Superko, H. R., Superko, A. R., Lundberg, G. P., Margolis, B., Garrett, B. C., Nasir, K., et al. (2014). Omega-3 fatty acid blood levels clinical significance update. Curr Cardiovasc Risk Rep, 8, 407.

    PubMed  PubMed Central  Google Scholar 

  22. Agbor, L. N., Wiest, E. F., Rothe, M., Schunck, W. H., & Walker, M. K. (2014). Role of CYP1A1 in modulating the vascular and blood pressure benefits of omega-3 polyunsaturated fatty acids. Journal of Pharmacology and Experimental Therapeutics, 351, 688–698.

    Google Scholar 

  23. Wiest, E. F., Walsh-Wilcox, M. T., Rothe, M., Schunck, W. H., & Walker, M. K. (2016). Dietary omega-3 polyunsaturated fatty acids prevent vascular dysfunction and attenuate cytochrome P4501A1 expression by 2,3,7,8-tetrachlorodibenzo-P-dioxin. Toxicological Sciences, 154, 43–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cirera, S. (2013). Highly efficient method for isolation of total RNA from adipose tissue. BMC Research Notes, 6, 472.

    PubMed  PubMed Central  Google Scholar 

  25. Lund, A. K., Goens, M. B., Kanagy, N. L., & Walker, M. K. (2003). Cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice is correlated with elevated angiotensin II, endothelin-1 and mean arterial blood pressure. Toxicology and Applied Pharmacology, 193, 177–187.

    CAS  PubMed  Google Scholar 

  26. Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J. W., Hill, M. N., et al. (2005). Recommendations for blood pressure measurement in humans: An AHA scientific statement from the Council on High Blood Pressure Research Professional and Public Education Subcommittee. J Clin Hypertens (Greenwich), 7, 102–109.

    Google Scholar 

  27. Harris, W. S., & Polreis, J. (2016). Measurement of the Omega-3 Index in dried blood spots. Annals of Clinical and Laboratory Research, 4, 137–143.

    Google Scholar 

  28. Hutchison, S. J., Glantz, S. A., Zhu, B. Q., Sun, Y. P., Chou, T. M., Chatterjee, K., et al. (1998). In-utero and neonatal exposure to secondhand smoke causes vascular dysfunction in newborn rats. Journal of the American College of Cardiology, 32, 1463–1467.

    CAS  PubMed  Google Scholar 

  29. Hutchison, S. J., Sudhir, K., Sievers, R. E., Zhu, B. Q., Sun, Y. P., Chou, T. M., et al. (1999). Effects of L-arginine on atherogenesis and endothelial dysfunction due to secondhand smoke. Hypertension, 34, 44–50.

    CAS  PubMed  Google Scholar 

  30. Hutchison, S. J., Sievers, R. E., Zhu, B. Q., Sun, Y. P., Stewart, D. J., Parmley, W. W., et al. (2001). Secondhand tobacco smoke impairs rabbit pulmonary artery endothelium-dependent relaxation. Chest, 120, 2004–2012.

    CAS  PubMed  Google Scholar 

  31. Kaplan, H. M., Kuyucu, Y., Polat, S., Pazarci, P., Yegani, A. A., Singirik, E., et al. (2018). Molecular basis of vascular damage caused by cigarette smoke exposure and a new approach to the treatment: Alpha-linolenic acid. Biomedicine & Pharmacotherapy, 102, 458–463.

    CAS  Google Scholar 

  32. Zehr, K. R., Segovia, A., Shah, M., Walsh-Wilcox, M. T., Brumbach, B. H., Anderson, J. R., et al. (2019). Associations of medium and long chain omega-3 polyunsaturated fatty acids with blood pressure in Hispanic and non-Hispanic smokers and nonsmokers. Prostaglandins Leukotrienes and Essential Fatty Acids, 144, 10–15.

    CAS  Google Scholar 

  33. Zehr, K. R., & Walker, M. K. (2018). Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prostaglandins & Other Lipid Mediators, 134, 131–140.

    CAS  Google Scholar 

  34. Leeson, C. P., Mann, A., Kattenhorn, M., Deanfield, J. E., Lucas, A., & Muller, D. P. (2002). Relationship between circulating n-3 fatty acid concentrations and endothelial function in early adulthood. European Heart Journal, 23, 216–222.

    CAS  PubMed  Google Scholar 

  35. Li, Q., Zhang, Q., Wang, M., Liu, F., Zhao, S., Ma, J., et al. (2007). Docosahexaenoic acid affects endothelial nitric oxide synthase in caveolae. Archives of Biochemistry and Biophysics, 466, 250–259.

    CAS  PubMed  Google Scholar 

  36. Li, Q., Zhang, Q., Wang, M., Zhao, S., Ma, J., Luo, N., et al. (2007). Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie, 89, 169–177.

    PubMed  Google Scholar 

  37. Stebbins, C. L., Stice, J. P., Hart, C. M., Mbai, F. N., & Knowlton, A. A. (2008). Effects of dietary decosahexaenoic acid (DHA) on eNOS in human coronary artery endothelial cells. Journal of Cardiovascular Pharmacology Therapeutics, 13, 261–268.

    CAS  PubMed  Google Scholar 

  38. Shimokawa, H., Aarhus, L. L., & Vanhoutte, P. M. (1988). Dietary omega 3 polyunsaturated fatty acids augment endothelium-dependent relaxation to bradykinin in coronary microvessels of the pig. British Journal of Pharmacology, 95, 1191–1196.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimokawa, H., & Vanhoutte, P. M. (1988). Dietary cod-liver oil improves endothelium-dependent responses in hypercholesterolemic and atherosclerotic porcine coronary arteries. Circulation, 78, 1421–1430.

    CAS  PubMed  Google Scholar 

  40. McVeigh, G. E., Brennan, G. M., Johnston, G. D., McDermott, B. J., McGrath, L. T., Henry, W. R., et al. (1993). Dietary fish oil augments nitric oxide production or release in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 36, 33–38.

    CAS  PubMed  Google Scholar 

  41. Tagawa, H., Shimokawa, H., Tagawa, T., Kuroiwa-Matsumoto, M., Hirooka, Y., & Takeshita, A. (1999). Long-term treatment with eicosapentaenoic acid augments both nitric oxide-mediated and non-nitric oxide-mediated endothelium-dependent forearm vasodilatation in patients with coronary artery disease. Journal of Cardiovascular Pharmacology, 33, 633–640.

    CAS  PubMed  Google Scholar 

  42. Behm, D. J., Ogbonna, A., Wu, C., Burns-Kurtis, C. L., & Douglas, S. A. (2009). Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: Identification of a novel mechanism of vasodilation. Journal of Pharmacology and Experimental Therapeutics, 328, 231–239.

    CAS  Google Scholar 

  43. Hercule, H. C., Salanova, B., Essin, K., Honeck, H., Falck, J. R., Sausbier, M., et al. (2007). The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents. Experimental Physiology, 92, 1067–1076.

    CAS  PubMed  Google Scholar 

  44. Safonova, I., Aubert, J., Negrel, R., & Ailhaud, G. (1997). Regulation by fatty acids of angiotensinogen gene expression in preadipose cells. The Biochemical Journal, 322(Pt 1), 235–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Siriwardhana, N., Kalupahana, N. S., Fletcher, S., Xin, W., Claycombe, K. J., Quignard-Boulange, A., et al. (2012). n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-kappaB-dependent mechanisms. Journal of Nutritional Biochemistry, 23, 1661–1667.

    CAS  Google Scholar 

  46. Walsh-Wilcox, M. T., Kaye, J., Rubinstein, E., & Walker, M. K. (2019). 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces vascular dysfunction that is dependent on perivascular adipose and cytochrome P4501A1 expression. Cardiovascular Toxicology, 19, 565–574.

    CAS  PubMed  Google Scholar 

  47. Arcand, S., Sharma, K., Al-Dissi, A. N., Cadete, V. J., Sawicki, G., & Weber, L. P. (2013). Resveratrol protects against functional impairment and cardiac structural protein degradation induced by secondhand smoke exposure. Canadian Journal of Cardiology, 29, 1320–1328.

    Google Scholar 

  48. Conklin, D. J., Malovichko, M. V., Zeller, I., Das, T. P., Krivokhizhina, T. V., Lynch, B. H., et al. (2017). Biomarkers of chronic acrolein inhalation exposure in mice: Implications for tobacco product-induced toxicity. Toxicological Sciences, 158, 263–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Scaglia, N., Chatkin, J., Chapman, K. R., Ferreira, I., Wagner, M., Selby, P., et al. (2016). The relationship between omega-3 and smoking habit: A cross-sectional study. Lipids Health Dis, 15, 61.

    PubMed  PubMed Central  Google Scholar 

  50. Leng, G. C., Horrobin, D. F., Fowkes, F. G., Smith, F. B., Lowe, G. D., Donnan, P. T., et al. (1994). Plasma essential fatty acids, cigarette smoking, and dietary antioxidants in peripheral arterial disease. A population-based case-control study. Arteriosclerosis and Thrombosis, 14, 471–478.

    CAS  PubMed  Google Scholar 

  51. Ghezzi, S., Rise, P., Ceruti, S., & Galli, C. (2007). Effects of cigarette smoke on cell viability, linoleic acid metabolism and cholesterol synthesis, in THP-1 cells. Lipids, 42, 629–636.

    CAS  PubMed  Google Scholar 

  52. Marangoni, F., Colombo, C., De Angelis, L., Gambaro, V., Agostoni, C., Giovannini, M., et al. (2004). Cigarette smoke negatively and dose-dependently affects the biosynthetic pathway of the n-3 polyunsaturated fatty acid series in human mammary epithelial cells. Lipids, 39, 633–637.

    CAS  PubMed  Google Scholar 

  53. Burdge, G. C., Jones, A. E., & Wootton, S. A. (2002). Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. British Journal of Nutrition, 88, 355–363.

    CAS  Google Scholar 

  54. Burdge, G. C., & Wootton, S. A. (2002). Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. British Journal of Nutrition, 88, 411–420.

    CAS  Google Scholar 

  55. Harris, W. S., & Von Schacky, C. (2004). The Omega-3 Index: A new risk factor for death from coronary heart disease? Preventive Medicine, 39, 212–220.

    CAS  PubMed  Google Scholar 

  56. Harris, W. S., Del Gobbo, L., & Tintle, N. L. (2017). The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis, 262, 51–54.

    CAS  PubMed  Google Scholar 

  57. Kim, A. S., Ko, H. J., Kwon, J. H., & Lee, J. M. (2018). Exposure to secondhand smoke and risk of cancer in never smokers: A meta-analysis of epidemiologic studies. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph15091981.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rockett, B. D., Harris, M., & Raza Shaikh, S. (2012). High dose of an n-3 polyunsaturated fatty acid diet lowers activity of C57BL/6 mice. Prostaglandins Leukotrienes and Essential Fatty Acids, 86, 137–140.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Clinical and Translational Center staff, including Susan Tigert, Michelle Jimenez, Abigail Cunningham, Adriana Villalobos, Hunter Esmiol, and Dominique Spence for their excellent technical support. This research was support by the National Institutes of Health (R15HL130970) and by the UNM Clinical and Translational Science Center (UL1TR001449) to M.K.W. and J.R.A.

Funding

This research was support by the National Institutes of Health (R15HL130970) and by the UNM Clinical and Translational Science Center (UL1TR001449) to M.K.W. and J.R.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary K. Walker.

Ethics declarations

Conflicts of interest

The authors declare they have no competing interests.

Ethics Approval

The experimental animal portion of this study was approved by the University of New Mexico Institutional Animal Care and Use Committee. The human subjects portion of this study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects were approved by the University of New Mexico Institutional Review Board (HRRC: 15–033).

Informed Consent

Written informed consent was obtained from all subjects.

Additional information

Handling Editor: Y. Robert Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheeler, E., Walsh-Wilcox, M., Shah, M. et al. Interactive Effects of Omega-3 Polyunsaturated Fatty Acids and Secondhand Smoke in Mice and Human Subjects. Cardiovasc Toxicol 21, 115–126 (2021). https://doi.org/10.1007/s12012-020-09601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09601-6

Keywords

Navigation