Skip to main content

Advertisement

Log in

Intermittent Exposure to Chlorpyrifos Differentially Impacts Neuroreflex Control of Cardiorespiratory Function in Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Previous studies showed that chlorpyrifos (CPF) acute exposure impaired cardiorespiratory reflexes. Evidence also indicates that continuous exposure to organophosphorus compounds impairs cardiovascular function. However, the effect of intermittent exposure to CPF, as may be experienced in the real world, on tonic and reflex cardiorespiratory function remains unexplored. Wistar rats were injected with saline or CPF for 4 weeks (3 times/week) or 12 weeks (once/week) at the doses of 7 mg/kg and 10 mg/kg. After exposure, blood pressure (BP), heart rate (HR), respiratory rate (fR), tidal volume (VT), and minute volume (VE) were recorded. Systolic BP and pulse interval (PI) variability, HR spectrum, spontaneous baroreflex and chemoreflex function were also evaluated. Plasma butyrylcholinesterase and brainstem acetylcholinesterase activities were quantified. Enzymatic activity of the CPF animals was reduced after both treatment periods. Baseline BP, HR, and fR, as well as systolic BP and PI variability indices, did not change, after CPF treatment. VT and VE were elevated in CPF animals. CPF exposure increased the very low-frequency component of the HR spectrum. Baroreflex gain was reduced after CPF 4-week exposure. Chemoreflex bradycardia was reduced in the CPF-treated rats. These data show that intermittent exposure to CPF impairs cardiorespiratory function in rats. These results may have important clinical implications for workers seasonally exposed to these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdou, K., & Hend, M. A. E.-A. (2018). Epidemiology of pesticides in developing countries. Advances in Clinical Toxicology, 3(1), 1–8.

    Google Scholar 

  2. FAOSTAT. (2018). No Title. Food and agriculture organization of the United Nations. Retrieved November 6, 2018, from http://www.fao.org/faostat/en/#data/

  3. Chowdhary, S., Bhattacharyya, R., & Banerjee, D. (2014). Acute organophosphorus poisoning. Clinica Chimica Acta, 431, 66–76. https://doi.org/10.1016/j.cca.2014.01.024.

    Article  CAS  Google Scholar 

  4. Eddleston, M. (2018). Novel clinical toxicology and pharmacology of organophosphorus insecticide self-poisoning. Annual Review of Pharmacology and Toxicology, (September 2018), 1–20. https://doi.org/10.1146/annurev-pharmtox-010818-021842

    CAS  PubMed  Google Scholar 

  5. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4(July), 1–8. https://doi.org/10.3389/fpubh.2016.00148.

    Article  Google Scholar 

  6. Muñoz-Quezada, M. T., Lucero, B. A., Iglesias, V. P., Muñoz, M. P., Cornejo, C. A., Achu, E., … Villalobos, M. (2016). Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. International Journal of Occupational and Environmental Health, 22(1), 68–79. https://doi.org/10.1080/10773525.2015.1123848.

    PubMed  PubMed Central  Google Scholar 

  7. Trueblood, A. B., & Shipp, E. M. (2018). Characteristics of acute occupational pesticide exposures reported to poison control centers in Texas, 2000–2015. Archives of Environmental & Occupational Health, 73(4), 228–235. https://doi.org/10.1080/19338244.2017.1339011.

    Article  CAS  Google Scholar 

  8. Jørs, E., Morant, R. C., Aguilar, G. C., Huici, O., Lander, F., Bælum, J., et al. (2006). Occupational pesticide intoxications among farmers in Bolivia: A cross-sectional study. Environmental Health: A Global Access Science Source, 5(10), 1–9. https://doi.org/10.1186/1476-069X-5-Received.

    Article  Google Scholar 

  9. Muniz, J. F., Mccauley, L., Scherer, J., Lasarev, M., Koshy, M., Kow, Y. W., … Kisby, G. E. (2008). Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study. Toxicology and Applied Pharmacology, 227(1), 97–107. https://doi.org/10.1016/j.taap.2007.10.027.

    CAS  PubMed  Google Scholar 

  10. Surajudeen, Y. A., Sheu, R. K., Ayokulehin, K. M., & Olatunbosun, A. G. (2014). Oxidative stress indices in Nigerian pesticide applicators and farmers occupationally exposed to organophosphate pesticides. International Journal of Applied and Basic Medical Research, 4, 37–40. https://doi.org/10.4103/2229-516X.140730.

    Article  CAS  Google Scholar 

  11. Dow-AgroSciences. (2016). Lorsban ™ NT Insecticide. Retrieved November 27, 2018, from http://msdssearch.dow.com/PublishedLiteratureDAS/dh_0979/0901b8038097929e.pdf?filepath=ca/pdfs/noreg/010-22088.pdf&fromPage=GetDoc

  12. USEPA. (2017). How to comply with the 2015 revised worker protection standard for agricultural pesticides: What owners and employers need to know. Pesticide Educational Resources Collaborative, 1–146.

  13. Vale, A., & Lotti, M. (2015). Organophosphorus and carbamate insecticide poisoning. Handbook of Clinical Neurology, 131, 149–168. https://doi.org/10.1016/B978-0-444-62627-1.00010-X.

    Article  PubMed  Google Scholar 

  14. Jamal, G. A., Hansen, S., & Julu, P. O. O. (2002). Low level exposures to organophosphorus esters may cause neurotoxicity. Toxicology, 181–182, 23–33. https://doi.org/10.1016/S0300-483X(02)00447-X.

    Article  PubMed  Google Scholar 

  15. Mackenzie Ross, S. J., Brewin, C. R., Curran, H. V., Furlong, C. E., Abraham-Smith, K. M., & Harrison, V. (2010). Neuropsychological and psychiatric functioning in sheep farmers exposed to low levels of organophosphate pesticides. Neurotoxicology and Teratology, 32(4), 452–459. https://doi.org/10.1016/j.ntt.2010.03.004.

    Article  CAS  PubMed  Google Scholar 

  16. Mackenzie Ross, S., McManus, I. C., Harrison, V., & Mason, O. (2013). Neurobehavioral problems following low-level exposure to organophosphate pesticides: A systematic and meta-analytic review. Critical Reviews in Toxicology, 43(1), 21–44. https://doi.org/10.3109/10408444.2012.738645.

    Article  CAS  Google Scholar 

  17. Georgiadis, N., Tsarouhas, K., Tsitsimpikou, C., Vardavas, A., Rezaee, R., Germanakisf, I., … Kouretas, D. (2018). Pesticides and cardiotoxicity. Where do we stand? Nikolaos. Toxicology and Applied Pharmacology, 353(February), 1–14. https://doi.org/10.1016/j.taap.2018.06.004

    CAS  PubMed  Google Scholar 

  18. Sarkar, R., Mohanakumar, K. P., & Chowdhury, M. (2000). Effects of an organophosphate pesticide, quinalphos, on the hypothalamo—pituitary—gonadal axis in adult male rats. Journal of Reproduction and Fertility, 118(1), 29–38. https://doi.org/10.1530/reprod/118.1.29.

    Article  CAS  PubMed  Google Scholar 

  19. Karimani, A. (2018). Captopril attenuates diazinon-induced oxidative stress: A subchronic study in rats. Iranian Journal of Medical Sciences, 43(5), 514–522.

    Google Scholar 

  20. Abdou, H. M., & El Mazoudy, R. H. (2010). Oxidative damage, hyperlipidemia and histological alterations of cardiac and skeletal muscles induced by different doses of diazinon in female rats. Journal of Hazardous Materials, 182(1–3), 273–278. https://doi.org/10.1016/j.jhazmat.2010.06.026.

    Article  CAS  PubMed  Google Scholar 

  21. Amara, B. I., Soudani, N., Hakim, A., Troudi, A., Zeghal, K. M., Boudawara, T., et al. (2011). Protective effects of vitamin e and selenium against dimethoate-induced cardiotoxicity in vivo: Biochemical and histological studies. Environmental Toxicology, 28, 630–643. https://doi.org/10.1002/tox.

    Article  CAS  PubMed  Google Scholar 

  22. Çetin, N., Çetin, E., Eraslan, G., & Bilgili, A. (2007). Chlorpyrifos induces cardiac dysfunction in rabbits. Research in Veterinary Science, 82(3), 405–408. https://doi.org/10.1016/j.rvsc.2006.08.002.

    Article  CAS  PubMed  Google Scholar 

  23. Razavi, B. M., Hosseinzadeh, H., Movassaghi, A. R., Imenshahidi, M., & Abnous, K. (2013). Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chemico-Biological Interactions, 203(3), 547–555. https://doi.org/10.1016/j.cbi.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  24. Saquib, Q., Attia, S. M., Siddiqui, M. A., Aboul-Soud, M. A. M., Al-Khedhairy, A. A., Giesy, J. P., et al. (2012). Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats. Toxicology and Applied Pharmacology, 259(1), 54–65. https://doi.org/10.1016/j.taap.2011.12.006.

    Article  CAS  PubMed  Google Scholar 

  25. Velmurugan, G., Venkatesh Babu, D. D., & Ramasamy, S. (2013). Prolonged monocrotophos intake induces cardiac oxidative stress and myocardial damage in rats. Toxicology, 307, 103–108. https://doi.org/10.1016/j.tox.2012.11.022.

    Article  CAS  PubMed  Google Scholar 

  26. Cunha, A. F., Felippe, I. S. A., Ferreira-junior, N. C., Resstel, L. B. M., Guimarães, D. A. M., Beijamini, V., … Sampaio, K. N. (2018). Neuroreflex control of cardiovascular function is impaired after acute poisoning with chlorpyrifos, an organophosphorus insecticide: Possible short and long term clinical implications. Toxicology, 398399(November 2017), 13–22. https://doi.org/10.1016/j.tox.2018.02.005

    CAS  PubMed  Google Scholar 

  27. Fernandez, G., Lee, J. A., Liu, L. C., & Gassler, J. P. (2015). The baroreflex in hypertension. Current Hypertension Reports, 17(3), 19. https://doi.org/10.1007/s11906-014-0531-z.

    Article  CAS  PubMed  Google Scholar 

  28. Guyenet, P. G. (2006). The sympathetic control of blood pressure. Nature Reviews Neuroscience, 7(5), 335–346. https://doi.org/10.1038/nrn1902.

    Article  CAS  PubMed  Google Scholar 

  29. Molkov, Y. I., Zoccal, D. B., Baekey, D. M., Abdala, A. P. L., Machado, B. H., Dick, T. E., … Rybak, I. A. (2014). Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system. Progress in Brain Research, 212(C), 1–23. https://doi.org/10.1016/b978-0-444-63488-7.00001-x.

    Google Scholar 

  30. Pijacka, W., Moraes, D. J. A., Ratcliffe, L. E. K., Nightingale, A. K., Hart, E. C., da Silva, M. P., … Paton, J. F. R. (2016). Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nature Medicine, 22(10), 1151–1159. https://doi.org/10.1038/nm.4173.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Simms, A. E., Paton, J. F. R., & Pickering, A. E. (2007). Hierarchical recruitment of the sympathetic and parasympathetic limbs of the baroreflex in normotensive and spontaneously hypertensive rats. The Journal of physiology, 579(Pt 2), 473–486. https://doi.org/10.1113/jphysiol.2006.124396.

    Article  CAS  PubMed  Google Scholar 

  32. Vasquez, E. C., Meyrelles, S. S., Mauad, H., & Cabral, A. M. (1997). Neural reflex regulation of arterial pressure in pathophysiological conditions: Interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Brazilian Journal of Medical and Biological Research, 30(4), 521–532. https://doi.org/10.1590/S0100-879X1997000400014.

    Article  CAS  PubMed  Google Scholar 

  33. Zanchetti, A., & Mancia, G. (1991). Cardiovascular reflexes and hypertension. Hypertension, 18(5 Suppl), III13-21.

    PubMed  Google Scholar 

  34. Roldán-Tapia, L., Parrón, T., & Sánchez-Santed, F. (2005). Neuropsychological effects of long-term exposure to organophosphate pesticides. Neurotoxicology and Teratology, 27(2), 259–266. https://doi.org/10.1016/j.ntt.2004.12.002.

    Article  CAS  PubMed  Google Scholar 

  35. Do Nascimento, C. P., Maretto, G. X., Marques, G. L. M., Passamani, L. M., Abdala, A. P., Schenberg, L. C., … Sampaio, K. N. (2017). Methamidophos, an organophosphorus insecticide, induces pro-aggressive behaviour in mice. Neurotoxicity Research, 32(3), 398–408. https://doi.org/10.1007/s12640-017-9750-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Siqueira, A. A., Cunha, A. F., Marques, G. L. M., Felippe, I. S. A., Minassa, V. S., Gramelich, T. C. da S., … Beijamini, V. (2019). Atropine counteracts the depressive-like behaviour elicited by acute exposure to commercial chlorpyrifos in rats. Neurotoxicology and Teratology, 71, 6–15. https://doi.org/10.1016/j.ntt.2018.11.002.

    CAS  PubMed  Google Scholar 

  37. Maretto, G. X., Do Nascimento, C. P., Passamani, L. M., Schenberg, L. C., de Andrade, T. U., Figueiredo, S. G., … Sampaio, K. N. (2012). Acute exposure to the insecticide O,S-dimethyl phosphoramidothioate (methamidophos) leads to impairment of cardiovascular reflexes in rats. Ecotoxicology and Environmental Safety, 80, 203–207. https://doi.org/10.1016/j.ecoenv.2012.03.001.

    CAS  PubMed  Google Scholar 

  38. Savy, C. Y., Fitchett, A. E., Mcquade, R., Gartside, S. E., Morris, C. M., Blain, P. G., et al. (2015). Low-level repeated exposure to diazinon and chlorpyrifos decrease anxiety-like behaviour in adult male rats as assessed by marble burying behaviour. Neurotoxicology, 50, 149–156. https://doi.org/10.1016/j.neuro.2015.08.010.

    Article  CAS  PubMed  Google Scholar 

  39. Judge, S. J., Savy, C. Y., Campbell, M., Dodds, R., Gomes, L. K., Laws, G., … Gartside, S. E. (2016). Mechanism for the acute effects of organophosphate pesticides on the adult 5-HT system. Chemico-Biological Interactions, 245, 82–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Oliveira, L. R., De Melo, V. U., Macedo, F. N., Barreto, A. S., Badaue-Passos, D., Viana Dos Santos, M. R., … Santana-Filho, V. J. (2012). Induction of chronic non-inflammatory widespread pain increases cardiac sympathetic modulation in rats. Autonomic Neuroscience: Basic and Clinical, 167(1–2), 45–49. https://doi.org/10.1016/j.autneu.2011.12.004.

    PubMed  Google Scholar 

  41. Simões, M. R., Preti, S. C., Azevedo, B. F., Fiorim, J., Freire, D. D., Covre, E. P., … Dos Santos, L. (2017). Low-level chronic lead exposure impairs neural control of blood pressure and heart rate in rats. Cardiovascular Toxicology, 17(2), 190–199. https://doi.org/10.1007/s12012-016-9374-y.

    Google Scholar 

  42. Fazan, R., de Oliveira, M., Oliveira, J. A. Ô. C., Salgado, H. C., & Garcia-Cairasco, N. (2011). Changes in autonomic control of the cardiovascular system in the Wistar audiogenic rat (WAR) strain. Epilepsy & Behavior, 22(4), 666–670. https://doi.org/10.1016/j.yebeh.2011.09.010.

    Article  Google Scholar 

  43. Franchini, K. G., & Krieger, E. M. (1993). Cardiovascular responses of conscious rats to carotid body chemoreceptor stimulation by intravenous KCN. Journal of the autonomic nervous system, 42(1), 63–69.

    CAS  PubMed  Google Scholar 

  44. Bartlett, D., & Tenney, S. M. (1970). Control of breathing in experimental anemia. Respiration Physiology, 10(3), 384–395. https://doi.org/10.1016/0034-5687(70)90056-3.

    Article  PubMed  Google Scholar 

  45. Drorbaugh, J. E., & Fenn, W. O. (1955). A barometric method for measuring ventilation in newborn infants. Pediatrics, 16(1), 81–87.

    CAS  PubMed  Google Scholar 

  46. Gomez, R. S., Gomez, M. V., & Prado, M. A. (2000). The effect of isoflurane on the release of [(3)H]-acetylcholine from rat brain cortical slices. Brain Research Bulletin, 52(4), 263–267. https://doi.org/10.1016/S0361-9230(00)00259-8.

    Article  CAS  PubMed  Google Scholar 

  47. Pastuszko, A. (1980). Action of barbiturates on activity of acetylcholinesterase from synaptosomal membranes. Neurochemical research, 5(7), 769–776.

    CAS  PubMed  Google Scholar 

  48. Silva, J. H., Gomez, R. S., Pinheiro, A. C. N., Gomez, M. V., & Guatimosim, C. (2005). Acetylcholine release induced by the volatile anesthetic sevoflurane in rat brain cortical slices. Cellular and Molecular Neurobiology, 25(5), 807–818. https://doi.org/10.1007/s10571-005-4934-x.

    Article  PubMed  Google Scholar 

  49. Valadão, P. A. C., Naves, L. A., Gomez, R. S., & Guatimosim, C. (2013). Etomidate evokes synaptic vesicle exocytosis without increasing miniature endplate potentials frequency at the mice neuromuscular junction. Neurochemistry International, 63(6), 576–582. https://doi.org/10.1016/j.neuint.2013.09.008.

    Article  CAS  PubMed  Google Scholar 

  50. Van Rijn, C. M., Krijnen, H., Menting-Hermeling, S., & Coenen, A. M. L. (2011). Decapitation in rats: Latency to unconsciousness and the “wave of death”. PLoS ONE, 6(1), e16514. https://doi.org/10.1371/journal.pone.0016514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dietz, A. A., Rubinstein, H. M., & Lubrano, T. (1973). Colorimetric determination of serum cholinesterase and its genetic variants by the propionylthiocholine-dithiobis(nitrobenzoic acid)procedure. Clinical Chemistry, 19(11), 1309–1313.

    CAS  PubMed  Google Scholar 

  52. Ellman, G. L., Courtney, K. D., Andres, V. J., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. https://doi.org/10.1016/0006-2952(61)90145-9

    CAS  PubMed  Google Scholar 

  53. Lassiter, T. L., Marshall, R. S., Jackson, L. C., Hunter, D. L., Vu, J. T., & Padilla, S. (2003). Automated measurement of acetylcholinesterase activity in rat peripheral tissues. Toxicology, 186(3), 241–253. https://doi.org/10.1016/S0300-483X(02)00752-7.

    Article  CAS  PubMed  Google Scholar 

  54. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  55. Newairy, A. A., & Abdou, H. M. (2013). Effect of propolis consumption on hepatotoxicity and brain damage in male rats exposed to chlorpyrifos. African Journal of Biotechnology, 12(33), 5232–5243. https://doi.org/10.5897/AJB12.2797.

    Article  CAS  Google Scholar 

  56. Baba, N. A., Raina, R., Verma, P. K., Sultana, M., Prawez, S., Nisar, N. A., et al. (2013). Toxic effects of fluoride and chlorpyrifos on. Reasearch Report, 46(April–June), 73–79.

    CAS  Google Scholar 

  57. Singh, S., Kaur, S., & Budhiraja, R. D. (2013). Chlorpyrifos- induced oxidative stress in rat’s brain and protective effect of grape seed extract. The Journal of Phytopharmacology, 2(3), 26–33. https://doi.org/10.1016/s0012-821x(99)00273-3.

    Article  Google Scholar 

  58. Mansour, S. A., & Mossa, A.-T. H. (2009). Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pesticide Biochemistry and Physiology, 93(1), 34–39. https://doi.org/10.1016/j.pestbp.2008.09.004.

    Article  CAS  Google Scholar 

  59. Kopjar, N., Žunec, S., Mendaš, G., Micek, V., Kašuba, V., Mikolić, A., … Želježić, D. (2018). Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats. Chemico-Biological Interactions, 279, 51–63. https://doi.org/10.1016/j.cbi.2017.10.029.

    CAS  PubMed  Google Scholar 

  60. Baş, H., & Kalender, Y. (2011). Chlorpyrifos induced cardiotoxicity in rats and the protective role of quercetin and catechin. Gazi University Journal of Science, 24(3), 385–395.

    Google Scholar 

  61. Guvenc Tuna, B., Ozturk, N., Comelekoglu, U., & Yilmaz, B. C. (2011). Effects of organophosphate insecticides on mechanical properties of rat aorta. Physiological research/Academia Scientiarum Bohemoslovaca, 60(1), 39–46.

    CAS  Google Scholar 

  62. Kalender, Y., Kaya, S., Durak, D., Uzun, F. G., & Demir, F. (2012). Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environmental Toxicology and Pharmacology, 33(2), 141–148. https://doi.org/10.1016/j.etap.2011.12.008.

    Article  CAS  PubMed  Google Scholar 

  63. Zafiropoulos, A., Tsarouhas, K., Tsitsimpikou, C., Fragkiadaki, P., Germanakis, I., Tsardi, M., … Tsatsakis, A. M. (2014). Cardiotoxicity in rabbits after a low-level exposure to diazinon, propoxur, and chlorpyrifos. Human and Experimental Toxicology, 33(12), 1241–1252. https://doi.org/10.1177/0960327114532384.

    CAS  Google Scholar 

  64. Andreollo, N. A., Freitas, E., Araújo, M. R., & Lopes, L. R. (2012). Review article rat’s age versus human’s age: What is the relationship? Arquivos Brasileiros de Cirurgia Digestiva, 25(1), 49–51.

    PubMed  Google Scholar 

  65. Sengupta, P. (2013). The laboratory rat: Relating its age with human’s. International journal of preventive medicine, 4(6), 624–630.

    PubMed  PubMed Central  Google Scholar 

  66. Eddleston, M., Buckley, N. A., Eyer, P., & Dawson, A. H. (2008). Management of acute organophosphorus pesticide poisoning. The Lancet, 371(9612), 597–607. https://doi.org/10.1016/S0140-6736(07)61202-1.

    Article  CAS  Google Scholar 

  67. Siqueira, A. A., Cunha, A. F., Marques, G. L. M., Felippe, I. S. A., Minassa, V. S., Gramelich, T. C. da S., … Beijamini, V. (2019). Atropine counteracts the depressive-like behaviour elicited by acute exposure to commercial chlorpyrifos in rats. Neurotoxicology and Teratology, 71, 6–15. https://doi.org/10.1016/j.ntt.2018.11.002

    CAS  PubMed  Google Scholar 

  68. Pohanka, M. (2013). Butyrylcholinesterase as a biochemical marker. Bratislavske Lekarske Listy, 114(12), 726–734. https://doi.org/10.4149/BLL_2013_153.

    Article  CAS  PubMed  Google Scholar 

  69. Stefanidou, M., Athanaselis, S., & Spiliopoulou, H. (2009). Butyrylcholinesterase: Biomarker for exposure to organophosphorus insecticides. Internal Medicine Journal, 39(1), 57–60. https://doi.org/10.1111/j.1445-5994.2008.01779.x.

    Article  CAS  PubMed  Google Scholar 

  70. Goliasch, G., Haschemi, A., Marculescu, R., Endler, G., Maurer, G., Wagner, O., … Niessner, A. (2012). Butyrylcholinesterase activity predicts long-term survival in patients with coronary artery disease. Clinical Chemistry, 58(6), 1055–1058. https://doi.org/10.1373/clinchem.2011.175984.

    CAS  PubMed  Google Scholar 

  71. Sulzgruber, P., Koller, L., Reiberger, T., El-hamid, F., Forster, S., Rothgerber, D. J., … Niessner, A. (2015). Butyrylcholinesterase predicts cardiac mortality in young patients with acute coronary syndrome. PLoS ONE, 10(5), 1–10. https://doi.org/10.1371/journal.pone.0123948.

    PubMed  PubMed Central  Google Scholar 

  72. Sun, L., Qi, X., Tan, Q., Yang, H., & Qi, X. (2016). Low serum-butyrylcholinesterase activity as a prognostic marker of mortality associates with poor cardiac function in acute myocardial infarction. Clinical Laboratory, 62(6), 1093–1099.

    CAS  PubMed  Google Scholar 

  73. Bernieri, T., Rodrigues, D., Randon Barbosa, I., Perassolo, M. S., Grolli Ardenghi, P., & Basso da Silva, L. (2019). Effect of pesticide exposure on total antioxidant capacity and biochemical parameters in Brazilian soybean farmers. Drug and Chemical Toxicology, 0545, 1–7. https://doi.org/10.1080/01480545.2019.1566353.

    Article  CAS  Google Scholar 

  74. Miranda-Contreras, L., Gómez-Pérez, R., Rojas, G., Cruz, I., Berrueta, L., Salmen, S., … Osuna, J. A. (2013). Occupational exposure to organophosphate and carbamate pesticides affects sperm chromatin integrity and reproductive hormone levels among venezuelan farm workers. Journal of Occupational Health, 55(3), 195–203. https://doi.org/10.1539/joh.12-0144-FS.

    PubMed  Google Scholar 

  75. Sözmen, B., Peker, S., Kaya, Ü., Erkan, M., & Sözmen, E. Y. (2007). Markers of long-term exposure to organophosphorus pesticides in farmers who work in viniculture and tobacco production in Turkey. Toxicology Mechanisms and Methods, 17(7), 379–384. https://doi.org/10.1080/15376510601094115.

    Article  CAS  PubMed  Google Scholar 

  76. Nagami, H., Suenaga, T., & Nakazaki, M. (2017). Pesticide exposure and subjective symptoms of cut-flower farmers. Journal of Rural Medicine, 12(1), 7–11. https://doi.org/10.2185/jrm.2922.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Salman, I. M. (2016). Major autonomic neuroregulatory pathways underlying short- and long-term control of cardiovascular function. Current Hypertension Reports, 18(3), 1–18. https://doi.org/10.1007/s11906-016-0625-x.

    Article  CAS  Google Scholar 

  78. Smith, E. G., & Gordon, C. J. (2005). The effects of chlorpyrifos on blood pressure and temperature regulation in spontaneously hypertensive rats. Basic & Clinical Pharmacology & Toxicology, 96(6), 503–511. https://doi.org/10.1111/j.1742-7843.2005.pto_15.x.

    Article  CAS  Google Scholar 

  79. Anthon, A. A., & Campaña-Salcido, A. D. (2011). Chlorpyrifos induces hypertension in rats. Journal of Environmental Chemistry and Ecotoxicology, 3(12), 304–308. https://doi.org/10.5897/JECE11.037.

    Article  CAS  Google Scholar 

  80. Yen, D. H. T., Yien, H., Wang, L., Lee, C., & Chan, S. (2000). Spectral analysis of systemic arterial pressure and heart rate signals of patients with acute respiratory failure induced by severe organophosphate poisoning. Critical Care Medicine, 28(8), 2805–2811.

    CAS  PubMed  Google Scholar 

  81. Kim, Y., & Jeong, J. (2017). Heart rate variability analysis in acute poisoning by cholinesterase inhibitors. Signa Vitae - A Journal In Intensive Care And Emergency Medicine, 13(2), 33–40. https://doi.org/10.22514/SV132.112017.5.

    Article  CAS  Google Scholar 

  82. Yen, D. H. T., Yen, J. C., Len, W. Bin, Wang, L. M., Lee, C. H., & Chan, S. H. H. (2001). Spectral changes in systemic arterial pressure signals during acute mevinphos intoxication in the rat. Shock, 15(1), 35–41. https://doi.org/10.1097/00024382-200115010-00006.

    Article  CAS  PubMed  Google Scholar 

  83. Deboer, R. W., Karemaker, J. M., & Strackee, J. (1987). Hemodynamic fluctuations and baroreflex sensitivity in humans: A beat-to-beat model. American Journal of Physiology-Heart and Circulatory Physiology, 253(3), H680–H689. https://doi.org/10.1152/ajpheart.1987.253.3.H680.

    Article  CAS  Google Scholar 

  84. Madwed, J. B., Albrecht, P., Mark, R. G., & Cohen, R. J. (1989). Low-frequency oscillations in arterial pressure and heart rate: A simple computer model. The American journal of physiology, 256(6 Pt 2), H1573–H1579.

    CAS  PubMed  Google Scholar 

  85. Oosting, J., Struijker-Boudier, H., & Janssen, B. (1997). Validation of a continuous baroreceptor reflex sensitivity index calculated from spontaneous fluctuations of blood pressure and pulse interval in rats. Journal of Hypertension, 15(4), 391–399. https://doi.org/10.1097/00004872-199715040-00010.

    Article  CAS  PubMed  Google Scholar 

  86. Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., … Malliani, A. (1986). Power spectral analysis of heart rate and arterial pressure variances as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59, 178–193

    CAS  PubMed  Google Scholar 

  87. Waki, H., Kasparov, S., Katahira, K., Shimizu, T., Murphy, D., & Paton, J. F. R. (2003). Dynamic exercise attenuates spontaneous baroreceptor reflex translation and integration experimental physiology: In humans, it has been reported that dynamic exercise attenuates spontaneous baroreceptor reflex sensitivity. Experimental Physiology, 88(4), 517–526.

    CAS  PubMed  Google Scholar 

  88. Akselrod, S., Gordon, D., Ubel, F., Shannon, D., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220–222. https://doi.org/10.1126/science.6166045.

    Article  CAS  PubMed  Google Scholar 

  89. Cerutti, C., Gustin, M. P., Paultre, C. Z., Lo, M., Julien, C., Vincent, M., et al. (1991). Autonomic nervous system and cardiovascular variability in rats: A spectral analysis approach. American Journal of Physiology-Heart and Circulatory Physiology, 261(4 Pt 2), H1292–H1299. https://doi.org/10.1111/j.1365-2486.2007.01384.x.

    Article  CAS  Google Scholar 

  90. Taylor, J. A., Carr, D. L., Myers, C. W., & Eckberg, D. L. (1998). Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation, 98(6), 547–555. https://doi.org/10.1161/01.CIR.98.6.547.

    Article  CAS  PubMed  Google Scholar 

  91. Soares, P. P. D. S., Da Nóbrega, A. C. L., Ushizima, M. R., & Irigoyen, M. C. C. (2004). Cholinergic stimulation with pyridostigmine increases heart rate variability and baroreflex sensitivity in rats. Autonomic Neuroscience: Basic and Clinical, 113(1–2), 24–31. https://doi.org/10.1016/j.autneu.2004.05.002.

    Article  CAS  Google Scholar 

  92. Malik, M. (1996). Guidelines Heart rate variability. European Heart Journal, 17, 354–381. https://doi.org/10.1161/01.CIR.93.5.1043.

    Article  Google Scholar 

  93. Murakami, H., Liu, J. L., & Zucker, I. H. (1997). Angiotensin II enhances baroreflex control of sympathetic outflow in heart failure. Hypertension, 29(2), 564–569. https://doi.org/10.1002/nau.20468.

    Article  CAS  PubMed  Google Scholar 

  94. Kubo, T., Hagiwara, Y., Endo, S., & Fukumori, R. (2002). Activation of hypothalamic angiotensin receptors produces pressor responses via cholinergic inputs to the rostral ventrolateral medulla in normotensive and hypertensive rats. Brain Research, 953(1–2), 232–245. https://doi.org/10.1016/S0006-8993(02)03297-3.

    Article  CAS  PubMed  Google Scholar 

  95. Carey, J. L., Dunn, C., & Gaspari, R. J. (2013). Central respiratory failure during acute organophosphate poisoning. Respiratory Physiology & Neurobiology, 189(2), 403–410. https://doi.org/10.1016/j.resp.2013.07.022.

    Article  CAS  Google Scholar 

  96. Houzé, P., Mager, D. E., Riséde, P., & Baud, F. J. (2010). Pharmacokinetics and toxicodynamics of pralidoxime effects on paraoxon-induced respiratory toxicity. Toxicological Sciences, 116(2), 660–672. https://doi.org/10.1093/toxsci/kfq152.

    Article  CAS  PubMed  Google Scholar 

  97. Gaspari, R. J., & Paydarfar, D. (2011). Dichlorvos-induced central apnea: Effects of selective brainstem exposure in the rat. NeuroToxicology, 32(2), 206–214. https://doi.org/10.1016/j.neuro.2011.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Darwiche, W., Gay-Quéheillard, J., Delanaud, S., Sabbouri, H. E. K. E, Khachfe, H., Joumaa, W., … Ramadan, W. (2018). Impact of chronic exposure to the pesticide chlorpyrifos on respiratory parameters and sleep apnea in juvenile and adult rats. PLoS ONE, 13(1), 1–12. https://doi.org/10.1371/journal.pone.0191237.

    PubMed  PubMed Central  Google Scholar 

  99. Baumgold, J., Cooperman, B. B., & White, T. M. (1989). Relationship between desensitization and sequestration of muscarinic cholinergic receptors in two neuronal. Neuropharmacology, 28, 1253–1261.

    CAS  PubMed  Google Scholar 

  100. Giniatullin, R., Nistri, A., & Yakel, J. L. (2005). Desensitization of nicotinic ACh receptors: Shaping cholinergic signaling. Trends in Neurosciences, 28(7), 371–378. https://doi.org/10.1016/j.tins.2005.04.009.

    Article  CAS  PubMed  Google Scholar 

  101. Richelson, E. (1978). Desensitisation of muscarinic receptor-mediated cyclic GMP formation by cultured nerve cells. Nature, 272, 366–368.

    CAS  PubMed  Google Scholar 

  102. Costa, L. G., Schwab, B. W., & Murphy, S. D. (1982). Differential alterations of cholinergic muscarinic receptors during chronic and acute tolerance to organophosphorus insecticides. Biochemical pharmacology, 31(21), 3407–3413.

    CAS  PubMed  Google Scholar 

  103. Bomser, J. A., & Casida, J. E. (2001). Diethylphosphorylation of rat cardiac M2 muscarinic receptor by chlorpyrifos oxon in vitro. Toxicology Letters, 119(1), 21–26.

    CAS  PubMed  Google Scholar 

  104. Howard, M. D., Mirajkar, N., Karanth, S., & Pope, C. N. (2007). Comparative effects of oral chlorpyrifos exposure on cholinesterase activity and muscarinic receptor binding in neonatal and adult rat heart. Toxicology, 238(2–3), 157–165. https://doi.org/10.1016/j.tox.2007.05.030.

    Article  CAS  PubMed  Google Scholar 

  105. Howard, M. D., & Pope, C. N. (2002). In vitro effects of chlorpyrifos, parathion, methyl parathion and their oxons on cardiac muscarinic receptor binding in neonatal and adult rats. Toxicology, 170(1–2), 1–10.

    CAS  PubMed  Google Scholar 

  106. Shao, X. M., & Feldman, J. L. (2005). Cholinergic neurotransmission in the preBötzinger complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. Neuroscience, 130(4), 1069–1081. https://doi.org/10.1016/j.neuroscience.2004.10.028.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TJB and ISAF were recipients of CAPES foundation scholarships and AVA was a recipient of a scholarship from the Federal University of Espírito Santo (UFES).

Funding

This work was funded by FAPES foundation (Fundação de Amparo à Pesquisa e Inovação do Espírito Santo) (Grant Numbers 67650856/15 and TO131/2019). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Nívea Sampaio.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted. All experiments were approved by the Institutional Committee for the Ethical Use of Animals for Research Purposes (CEUA-UFES; Approval Number 36/2016).

Additional information

Handling Editor: Kurt J. Varner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 61 kb)

Supplementary material 2 (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, T.J., Minassa, V.S., Aitken, A.V. et al. Intermittent Exposure to Chlorpyrifos Differentially Impacts Neuroreflex Control of Cardiorespiratory Function in Rats. Cardiovasc Toxicol 19, 548–564 (2019). https://doi.org/10.1007/s12012-019-09528-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09528-7

Keywords

Navigation