Skip to main content
Log in

Linoleic Acid Metabolite DiHOME Decreases Post-ischemic Cardiac Recovery in Murine Hearts

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiac ischemia/reperfusion injury is associated with the formation and action of lipid mediators derived from polyunsaturated fatty acids. Among them, linoleic acid (LA) is metabolized to epoxyoctadecanoic acids (EpOMEs) by cytochrome P450 (CYP) epoxygenases and further to dihydroxyoctadecanoic acids (DiHOMEs) by soluble epoxide hydrolase (sEH). We hypothesized that EpOMEs and/or DiHOMEs may affect cardiac post-ischemic recovery and addressed this question using isolated murine hearts in a Langendorff system. Hearts from C57Bl6 mice were exposed to 12,13-EpOME, 12,13-DiHOME, or vehicle (phosphate buffered sodium; PBS). Effects on basal cardiac function and functional recovery during reperfusion following 20 min of ischemia were investigated. Electrocardiogram (ECG), left ventricular (LV) pressure and coronary flow (CF) were continuously measured. Ischemia reperfusion experiments were repeated after administration of the sEH-inhibitor 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA). At a concentration of 100 nM, both EpOME and DiHOME decreased post-ischemic functional recovery in murine hearts. There was no effect on basal cardiac parameters. The detrimental effects seen with EpOME, but not DiHOME, were averted by sEH inhibition (AUDA). Our results indicate that LA-derived mediators EpOME/DiHOME may play an important role in cardiac ischemic events. Inhibition of sEH could provide a novel treatment option to prevent detrimental DiHOME effects in acute cardiac ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUDA:

12-(3-Adamantan-1-yl-ureido)dodecanoic acid

CF:

Coronary flow

CYP:

Cytochrome P450

DiHOME:

Dihydroxyoctadecanoic acid

EET:

Epoxyeicosatrienoic acid

EpOME:

Epoxyoctadecanoic acid

HR:

Heart rate

LA:

Linoleic acid

LV:

Left ventricle

LVdia:

Left ventricular diastolic pressure

LVDP:

Left ventricular developed pressure

PBS:

Phosphate-buffered sodium

sEH:

Soluble epoxide hydrolase

References

  1. Pagidipati, N. J., & Gaziano, T. A. (2013). Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation, 127, 749–756.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., … Turner, M. B. (2015). Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation, 131, e29–e322.

    PubMed  Google Scholar 

  3. Cleland, J. G., Torabi, A., & Khan, N. K. (2005). Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart, 91(Suppl 2), ii7–ii13; discussion ii31, ii43-18.

    PubMed  PubMed Central  Google Scholar 

  4. Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53, 31–47.

    Article  CAS  PubMed  Google Scholar 

  5. Eliasz, A. W., Chapman, D., & Ewing, D. F. (1976). Phospholipid phase transitions. Effects of n-alcohols, n-monocarboxylic acids, phenylalkyl alcohols and quaternary ammonium compounds. Biochimica et Biophysica Acta, 448, 220–230.

    Article  CAS  PubMed  Google Scholar 

  6. Schuchardt, J. P., Schmidt, S., Kressel, G., Dong, H., Willenberg, I., Hammock, B. D., Hahn, A., & Schebb, N. H. (2013). Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukotrienes and Essential Fatty Acids, 89, 19–29.

    Article  CAS  Google Scholar 

  7. Konkel, A., & Schunck, W. H. (2011). Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochimica et Biophysica Acta, 1814, 210–222.

    Article  CAS  PubMed  Google Scholar 

  8. Harris, T. R., & Hammock, B. D. (2013). Soluble epoxide hydrolase: gene structure, expression and deletion. Gene, 526, 61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov, 8, 794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ozawa, T., Hayakawa, M., Takamura, T., Sugiyama, S., Suzuki, K., Iwata, M., Taki, F., & Tomita, T. (1986). Biosynthesis of leukotoxin, 9,10-epoxy-12 octadecenoate, by leukocytes in lung lavages of rat after exposure to hyperoxia. Biochemical and Biophysical Research Communications, 134, 1071–1078.

    Article  CAS  PubMed  Google Scholar 

  11. Ishizaki, T., Shigemori, K., Nakai, T., Miyabo, S., Ozawa, T., Chang, S. W., & Voelkel, N. F. (1995). Leukotoxin, 9,10-Epoxy-12-Octadecenoate Causes Edematous Lung Injury Via Activation of Vascular Nitric-Oxide Synthase. American Journal of Physiology-Lung Cellular and Molecular Physiology, 269, L65–L70.

    Article  CAS  Google Scholar 

  12. Sigfried, M. R. A., N.; Lefer, A. M.; Elisseou, E. M.; Zipkin, R.E (1990). Direct cardiovascular actions of two metabolites of linoleic acid. Life Sciences, 46, 427–433.

    Article  Google Scholar 

  13. Sugiyama, S., Hayakawa, M., Nagai, S., Ajioka, M., & Ozawa, T. (1987). Leukotoxin, 9, 10-epoxy-12-octadecenoate, causes cardiac failure in dogs. Life Sciences, 40, 225–231.

    Article  CAS  PubMed  Google Scholar 

  14. Li, N., Liu, J. Y., Timofeyev, V., Qiu, H., Hwang, S. H., Tuteja, D., … Chiamvimonvat, N. (2009). Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: Insight gained using metabolomic approaches. Journal of Molecular and Cellular Cardiology, 47, 835–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seubert, J. M., Sinal, C. J., Graves, J., DeGraff, L. M., Bradbury, J. A., Lee, C. R., … Zeldin, D. C. (2006). Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circulation Research, 99, 442–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayakawa, M., Kosaka, K., Sugiyama, S., Yokoo, K., Aoyama, H., Izawa, Y., & Ozawa, T. (1990). Proposal of leukotoxin, 9,10-epoxy-12-octadecenoate, as a burn toxin. Biochemistry International, 21, 573–579.

    CAS  PubMed  Google Scholar 

  17. Kosaka, K., Suzuki, K., Hayakawa, M., Sugiyama, S., & Ozawa, T. (1994). Leukotoxin, a linoleate epoxide: its implication in the late death of patients with extensive burns. Molecular and Cellular Biochemistry, 139, 141–148.

    Article  CAS  PubMed  Google Scholar 

  18. Edin, M. L., Wang, Z., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., & Zeldin, D. C. (2011). Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart. The FASEB Journal, 25, 3436–3447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greene, J. F., Williamson, K. C., Newman, J. W., Morisseau, C., & Hammock, B. D. (2000). Metabolism of monoepoxides of methyl linoleate: bioactivation and detoxification. Archives of Biochemistry and Biophysics, 376, 420–432.

    Article  CAS  PubMed  Google Scholar 

  20. Sakai, T., Ishizaki, T., Ohnishi, T., Sasaki, F., Ameshima, S., Nakai, T., Miyabo, S., Matsukawa, S., Hayakawa, M., & Ozawa, T. (1995). Leukotoxin, 9,10-epoxy-12-octadecenoate inhibits mitochondrial respiration of isolated perfused rat lung. American Journal of Physiology, 269, L326–L331.

    CAS  PubMed  Google Scholar 

  21. Thompson, D. A., & Hammock, B. D. (2007). Dihydroxyoctadecamonoenoate esters inhibit the neutrophil respiratory burst. J Biosci., 32, 279–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dudda, A., Spiteller, G., & Kobelt, F. (1996). Lipid oxidation products in ischemic porcine heart tissue. Chemistry and Physics of Lipids, 82, 39–51.

    Article  CAS  PubMed  Google Scholar 

  23. Stimers, J. R., Dobretsov, M., Hastings, S. L., Jude, A. R., & Grant, D. F. (1999). Effects of linoleic acid metabolites on electrical activity in adult rat ventricular myocytes. Biochimica et Biophysica Acta, 1438, 359–368.

    Article  CAS  PubMed  Google Scholar 

  24. Harrell, M. D., & Stimers, J. R. (2002). Differential effects of linoleic Acid metabolites on cardiac sodium current. Journal of Pharmacology and Experimental Therapeutics, 303, 347–355.

    Article  CAS  PubMed  Google Scholar 

  25. Ha, J., Dobretsov, M., Kurten, R. C., Grant, D. F., & Stimers, J. R. (2002). Effect of linoleic acid metabolites on Na(+)/K(+) pump current in N20.1 oligodendrocytes: role of membrane fluidity. Toxicology and Applied Pharmacology, 182, 76–83.

    Article  CAS  PubMed  Google Scholar 

  26. Sisemore, M. F., Zheng, J., Yang, J. C., Thompson, D. A., Plopper, C. G., Cortopassi, G. A., & Hammock, B. D. (2001). Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction. Archives of Biochemistry and Biophysics, 392, 32–37.

    Article  CAS  PubMed  Google Scholar 

  27. Moghaddam, M. F., Grant, D. F., Cheek, J. M., Greene, J. F., Williamson, K. C., & Hammock, B. D. (1997). Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nature Medicine, 3, 562–566.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, J. P., Yang, S. H., Lee, H. Y., Kim, B., Cho, J. Y., Paik, J. H., Oh, Y. J., Kim, D. K., Lim, C. S., & Kim, Y. S. (2012). Soluble epoxide hydrolase activity determines the severity of ischemia-reperfusion injury in kidney. PLoS ONE, 7, e37075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaudhary, K. R., Zordoky, B. N., Edin, M. L., Alsaleh, N., El-Kadi, A. O., Zeldin, D. C., & Seubert, J. M. (2013). Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice. Prostaglandins Other Lipid Mediat, 104–105, 8–17.

    Article  CAS  PubMed  Google Scholar 

  30. Mitchell, L. A., Moran, J. H., & Grant, D. F. (2002). Linoleic acid, cis-epoxyoctadecenoic acids, and dihydroxyoctadecadienoic acids are toxic to Sf-21 cells in the absence of albumin. Toxicology Letters, 126, 187–196.

    Article  CAS  PubMed  Google Scholar 

  31. Moran, J. H., Nowak, G., & Grant, D. F. (2001). Analysis of the toxic effects of linoleic acid, 12,13-cis-epoxyoctadecenoic acid, and 12,13-dihydroxyoctadecenoic acid in rabbit renal cortical mitochondria. Toxicology and Applied Pharmacology, 172, 150–161.

    Article  CAS  PubMed  Google Scholar 

  32. Motoki, A., Merkel, M. J., Packwood, W. H., Cao, Z., Liu, L., Iliff, J., Alkayed, N. J., & Van Winkle, D. M. (2008). Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. American Journal of Physiology Heart and Circulatory Physiology, 295, H2128–H2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Viswanathan, S., Hammock, B. D., Newman, J. W., Meerarani, P., Toborek, M., & Hennig, B. (2003). Involvement of CYP 2C9 in mediating the proinflammatory effects of linoleic acid in vascular endothelial cells. Journal of the American College of Nutrition, 22, 502–510.

    Article  CAS  PubMed  Google Scholar 

  34. Di Lisa, F., Canton, M., Menabo, R., Kaludercic, N., & Bernardi, P. (2007). Mitochondria and cardioprotection. Heart Failure Reviews, 12, 249–260.

    Article  CAS  PubMed  Google Scholar 

  35. Spector, A. A., Fang, X., Snyder, G. D., & Weintraub, N. L. (2004). Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Progress in Lipid Research, 43, 55–90.

    Article  CAS  PubMed  Google Scholar 

  36. Spector, A. A., & Kim, H. Y. (2015). Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochimica et Biophysica Acta, 1851, 356–365.

    Article  CAS  PubMed  Google Scholar 

  37. Lu, T., VanRollins, M., & Lee, H. C. (2002). Stereospecific activation of cardiac ATP-sensitive K(+) channels by epoxyeicosatrienoic acids: a structural determinant study. Molecular Pharmacology, 62, 1076–1083.

    Article  CAS  PubMed  Google Scholar 

  38. Cabral, M., Martin-Venegas, R., & Moreno, J. J. (2014). Differential cell growth/apoptosis behavior of 13-hydroxyoctadecadienoic acid enantiomers in a colorectal cancer cell line. American Journal of Physiology. Gastrointestinal and Liver Physiology, 307, G664–G671.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In this work results of the dissertation “Effekte der Linolsäurederivate 12,13-Epoxyoctadecensäure(-methylester) und 12,13-Dihydroxyoctadecensäure(-methylester) auf das isolierte murine Herz” by Marwin Bannehr submitted in 2019 to Charité - Universitätsmedizin Berlin have been included. The authors thank Bastian Spallek, Michael Gotthardt and Ingo Morano for technical support and assistance during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwin Bannehr.

Ethics declarations

Disclosure

All authors have nothing to disclose.

Additional information

Handling Editor: Y. James Kang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannehr, M., Löhr, L., Gelep, J. et al. Linoleic Acid Metabolite DiHOME Decreases Post-ischemic Cardiac Recovery in Murine Hearts. Cardiovasc Toxicol 19, 365–371 (2019). https://doi.org/10.1007/s12012-019-09508-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09508-x

Keywords

Navigation