Skip to main content

Advertisement

Log in

Limb Blood Flow Restriction Plus Mild Aerobic Exercise Training Protects the Heart Against Isoproterenol-Induced Cardiac Injury in Old Rats: Role of GSK-3β

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The present study was conducted to evaluate the effect of blood flow restriction (BFR) training on cardiac resistance to isoproterenol (ISO) induced heart injury in old rats and examined the hypothesis that BFR training may interfere with age-associated impairment of mitochondria by the inhibitory phosphorylation of GSK-3β at Ser9. Old male Wistar rats were divided into the following six groups: CTL (control), ISO (isoproterenol-treated), Sh + ISO (sham-operated plus ISO), BFR + ISO (blood flow restriction plus ISO), Sh-Ex + ISO (sham-operated subjected to exercise and ISO), and BFR-Ex + ISO (blood flow restriction along with exercise and ISO). 10 weeks of exercise training was considered. Then, cardiac injury was induced and physiological, histological, and biochemical parameters were recorded and assessed. Compared to CTL group, isoproterenol administration significantly reduced the systolic arterial pressure (SAP), left-ventricular systolic pressure (LVSP), and ± dp/dt max (P < 0.05). BFR training improved these parameters in the way that BFR-Ex + ISO group had higher SAP, LVSP and ± dp/dt max (P < 0.05) and lower LVEDP (left-ventricular end diastolic pressure) (P < 0.01) than untrained and Sh-Ex + ISO groups. The pS9-GSK-3β and pS9-GSK-3β/GSK-3β ratio were increased in the BFR-Ex + ISO group compared to CTL, ISO, Sh + ISO, and BFR + ISO groups (P < 0.05). The level of plasma cardiac Troponin-I and the severity of the injuries were significantly reduced in BFR-Ex + ISO group versus other cardiac damaged groups. In conclusion, our findings clearly confirmed the cardio-protective effect of BFR training against ISO-induced myocardial injury. Increased phosphorylated GSK-3β and angiogenesis in this model of exercise justify the resistance of old hearts facing stressful situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arshad, J., Sagar, S., & Terzic, A. (2007). Aging and cardioprotection. Journal of Applied Physiology, 103(6), 2120–2128.

    Article  Google Scholar 

  2. Narula, J., Jones, M. K., Deng, X., & Tarnawski, A. S. (2010). Impaired angiogenesis in aging myocardial microvascular endothelial cells is associated with reduced importin alpha and decreased nuclear transport of HIF1 alpha: Mechanistic implications. Journal of Physiology and Pharmacology, 61(2), 133–139.

    PubMed  Google Scholar 

  3. Crompton, M. (2004). Mitochondria and aging: A role for the permeability transition. Aging Cell, 3(1), 3–6.

    Article  CAS  PubMed  Google Scholar 

  4. Di Lisa, F., Canton, M., Menabò, R., Kaludercic, N., & Bernardi, P. (2007). Mitochondria and cardioprotection. Heart Failure Reviews, 12(3–4), 249–260.

    Article  CAS  PubMed  Google Scholar 

  5. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239.

    Article  CAS  PubMed  Google Scholar 

  6. Yao, H. B., Shaw, P. C., Wong, C. C., & Wan, D. C. (2002). Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain. Journal of Chemical Neuroanatomy, 23(4), 291–297.

    Article  CAS  PubMed  Google Scholar 

  7. Tong, H., Imahashi, K., Steenbergen, C., & Murphy, E. (2002). Phosphorylation of glycogen synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase–dependent pathway is cardioprotective. Circulation Research, 90(4), 377–379.

    Article  CAS  PubMed  Google Scholar 

  8. Gross, E. R., Hsu, A. K., & Gross, G. J. (2004). Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circulation Research, 94(7), 960–966.

    Article  CAS  PubMed  Google Scholar 

  9. Miura, T., Tanno, M., Miki, T., & Sato, T. (2006). Ser9 phosphorylation of mitochondrial GSK-3β is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. American Journal of Physiology-Heart and Circulatory Physiology, 295(5), H2079-H2086.

    Google Scholar 

  10. Park, S. S., Zhao, H., Mueller, R. A., & Xu, Z. (2006). Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3β. Journal of Molecular and Cellular Cardiology, 40(5), 708–716.

    Article  CAS  PubMed  Google Scholar 

  11. Omar, M. A., Wang, L., & Clanachan, A. S. (2010). Cardioprotection by GSK-3 inhibition: Role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovascular Research, 86(3), 478–486.

    Article  CAS  PubMed  Google Scholar 

  12. Guertin, D. A., & Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer Cell, 12(1), 9–22.

    Article  CAS  PubMed  Google Scholar 

  13. Ascensao, A., Lumini-Oliveira, J., Oliveira, J. P., & Magalhaes, J. (2011). Mitochondria as a target for exercise-induced cardioprotection. Current Drug Targets, 12(6), 860–871.

    Article  CAS  PubMed  Google Scholar 

  14. Hausenloy, D. J., Lecour, S., & Yellon, D. M. (2011). Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: Two sides of the same coin. Antioxidants & Redox Signaling, 14(5), 893–907.

    Article  CAS  Google Scholar 

  15. Heusch, G., Boengler, K., & Schulz, R. (2008). Cardioprotection: Nitric oxide, protein kinases, and mitochondria. Circulation, 118(19), 1915–1919.

    Article  PubMed  Google Scholar 

  16. Léger, B., Cartoni, R., Praz, M., Lamon, S., & Dériaz, O. (2006). Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. The Journal of Physiology, 576(3), 923–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pearson, S. J., & Hussain, S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Medicine, 45(2), 187–200.

    Article  PubMed  Google Scholar 

  18. Bahreinipour, M. A., Joukar, S., Hovanloo, F., Najafipour, H., & Naderi-boldaji, V. (2018). Mild aerobic training with blood flow restriction increases the hypertrophy index and MuSK in both slow and fast muscles of old rats: Role of PGC-1α. Life Sciences, 202, 103–109.

    Article  CAS  PubMed  Google Scholar 

  19. Raji-Amirhasani, A., Joukar, S., Naderi-boldaji, V., & Bejeshk, M. A. (2018). Mild exercise along with limb blood-flow restriction modulates the electrocardiogram, angiotensin, and apelin receptors of the heart in aging rats. Iranian Journal of Basic Medical Sciences, 21(6), 558–563.

    PubMed  PubMed Central  Google Scholar 

  20. Bahreinipour, M. A., Joukar, S., Hovanloo, F., & Najafipour, h (2017). Long-term low-intensity endurance exercise along with blood-flow restriction improves muscle mass and neuromuscular junction compartments in old rats. Iranian Journal of Medical Sciences, 42(6), 569.

    Google Scholar 

  21. Joukar, S., Najafipour, H., Dabiri, S. H., Sheibani, M., & Sharokhi, N. (2014). Cardioprotective effect of mumie (shilajit) on experimentally induced myocardial injury. Cardiovascular Toxicology, 4(3), 214–221.

    Article  Google Scholar 

  22. Westenbrink, B. D., Ruifrok, W. P., Voors, A. A., & Schoemaker, R. G. (2010). Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovascular Research, 87(1), 30–39.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, J., Rebecchi, M. J., Glass, P. S., Brink, P. R., & Liu, L. (2011). Cardioprotection of the aged rat heart by GSK-3β inhibitor is attenuated: Age-related changes in mitochondrial permeability transition pore modulation. American Journal of Physiology-Heart and Circulatory Physiology, 300(3), H922–H930.

    Article  CAS  PubMed  Google Scholar 

  24. Noorafshan, A. (2014). Stereology as a valuable tool in the toolbox of testicular research. Annals of Anatomy, 196(1), 57–66.

    Article  PubMed  Google Scholar 

  25. Joukar, S., Sheibani, M., & Joukar, F. (2012). Cardiovascular effect of nifedipine in morphine dependent rats: Hemodynamic, histopathological, and biochemical evidence. Croatian Medical Journal, 53(4), 343–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mühlfeld, C., Nyengaard, J. R., & Mayhew, T. M. (2010). A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovascular Pathology, 19(2), 65–82.

    Article  PubMed  Google Scholar 

  27. Rona, G., Chappel, C. I., Balazs, T., & Gaudry, R. (1959). An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Archives of Pathology & Laboratory Medicine, 67, 443–455.

    CAS  Google Scholar 

  28. Duchen, M. R. (2004). Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Molecular Aspects of Medicine, 25(4), 365–451.

    Article  CAS  PubMed  Google Scholar 

  29. Aminizadeh, S., Marefati, H., Najafipour, H., Joukar, S., Dabiri, Sh, & Shahouzehi, B. (2016). Protective effects of high-intensity versus low-intensity interval training on isoproterenol-induced cardiac injury in wistar rats. Research in Cardiovascular Medicine, 6(1), 5.

    Google Scholar 

  30. Naderi-Boldaji, V., Joukar, S., Noorafshan, A., Raji-amirhasani, A., Naderi-Boldaji, S., & Bejeshk, M. A. (2018). The effect of blood flow restriction along with low-intensity exercise on cardiac structure and function in aging rat: Role of angiogenesis. Life Sciences, 15(209), 202–209.

    Article  CAS  Google Scholar 

  31. Abe, T., Fujita, S, Nakajima, T., Sakamaki, M., & Ozaki, H. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2 max in young men. Journal of Sports Science & Medicine, 9(3), 452–458.

    Google Scholar 

  32. Park, S., Kim, J. K., Choi, H. M., Kim, H. G., Beekley, M. D., & Nho, H. (2010). Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. European Journal of Applied Physiology, 109(4), 591–600.

    Article  PubMed  Google Scholar 

  33. Corvino, R. B., Denadai, B. S., Caputo, F., & dos Santos, R. P. (2014). Four weeks of blood flow restricted training increases time to exhaustion at severe intensity cycling exercise. Revista Brasileira de Cineantropometria & Desempenho Humano, 16(5), 557–570.

    Google Scholar 

  34. Oliveira, M. F. M., Caputo, F., Corvino, R. B., & Denadai, B. S. (2016). Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scandinavian Journal of Medicine & Science in Sports, 26(9), 017–1025.

    Article  Google Scholar 

  35. Ascensão, A., Lumini-Oliveira, J., Machado, G., & Ferreira, R. M., & Gonçalves, I. O. (2011). Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore in doxorubicin treated rats. Clinical Science, 120(1), 37–49.

    Article  CAS  PubMed  Google Scholar 

  36. Wu, Y., Peng, H., Cui, M., Whitney, N. P., Huang, Y., & Zheng, C. J. (2009). CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. Journal of Neurochemistry, 109(4), 1157–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pons, S., Martin, V., Portal, L., Zini, R., & Morin, D. (2013). Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities. Journal of Molecular and Cellular Cardiology, 54, 82–89.

    Article  CAS  PubMed  Google Scholar 

  38. Miura, T., Nishihara, M., & Miki, T. (2009). Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: Role of GSK-3beta in myocardial protection against ischemia/reperfusion injury. Pharmacolgical Science, 109(2), 162–167.

    Article  CAS  Google Scholar 

  39. Lim, S. Y., Davidson, S. M., Hausenloy, D. J., & Yellon, D. M. (2007). Preconditioning and postconditioning: The essential role of the mitochondrial permeability transition pore. Cardiovascular Research, 75(3), 530–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miura, T., & Miki, T. (2009). GSK-3β, a therapeutic target for cardiomyocyte protection. Circulation Journal, 73(7), 1184–1192.

    Article  CAS  PubMed  Google Scholar 

  41. Izem-Meziane, M., Djerdjouri, B., Rimbaud, S., & Caffin, F. (2011). Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: Protective effect of curcumin. American Journal of Physiology-Heart and Circulatory Physiology, 302(3), H665–H674.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Behzad Behbahani and Mrs. Samaneh Naderi from Diagnostic Laboratory Science and Technology Research Center, Shiraz, Iran, for their technical supporting and providing laboratory equipment. We are also grateful to Miss Elham Nadimi for her help and encouragement in histological evaluations. This work was financially supported by Kerman University of Medical Sciences, Kerman, Iran, (1394/495) and provided from the results of PhD thesis of Mrs. V. Naderi-boldaji.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyavash Joukar.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interests in this study.

Ethical Approval

All applicable national guidelines for the care and use of animals were followed. The study was approved by the Ethical Committee in Research of the Kerman University of medical science, Kerman, Iran (permission No IR.KMU.REC.1394.495) and the experimental protocol was conducted in accordance with the guidelines of that university for conducting animal studies.

Additional information

Handling Editor: Kurt J. Varner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi-Boldaji, V., Joukar, S., Noorafshan, A. et al. Limb Blood Flow Restriction Plus Mild Aerobic Exercise Training Protects the Heart Against Isoproterenol-Induced Cardiac Injury in Old Rats: Role of GSK-3β. Cardiovasc Toxicol 19, 210–219 (2019). https://doi.org/10.1007/s12012-018-9490-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9490-y

Keywords

Navigation