Skip to main content
Log in

Association of Fasting Serum Bilirubin Levels with Clinical Outcomes After Percutaneous Coronary Intervention: A Prospective Study

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The aim is to investigate the association of fasting serum bilirubin (FSB) levels with the prognosis of coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI). A total of 450 hospitalized patients with CAD undergoing PCI were enrolled. The clinical data including FSB levels, basic biochemical indices, and traditional cardiovascular risk factors were recorded after admission, and all patients were followed up for 2.17 ± 0.67 years. The primary endpoint was the occurrence of major adverse cardiovascular events (MACE). The 450 patients were divided into three groups based on their FSB levels: high FSB group (≥12.00 μmol/L; n = 158), intermediate FSB group (8.54–11.99 μmol/L; n = 141), and low FSB group (≤8.53 μmol/L; n = 151). A total of 118 MACEs were identified during the follow-up. Multivariate cox regression analysis showed that a decreased FSB level was an independent predictor of MACE in CAD patients (RR = 0.858, 95% CI 0.813–0.906, P = 0.001) post-PCI. Kaplan–Meier survival analysis suggested that the patients with low FSB tended to have a decreased MACE-free survival (log-rank test, χ2 = 34.65, P = 0.001). The baseline level of FSB is an independent predictor for clinical outcomes in post-PCI CAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Poulter, N., Sever, P., Thom, S., et al. (1993). Cardiovascular disease: Risk factors and intervention (p. 351). Oxford: Radcliffe Medical Press.

    Google Scholar 

  2. Walldius, G., Jungner, I., Aastveit, A. H., Holme, I., Furberg, C. D., & Sniderman, A. D. (2004). The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clinical Chemistry and Laboratory Medicine, 42, 1355–1363.

    Article  CAS  PubMed  Google Scholar 

  3. Sierra-Johnson, J., Fisher, R. M., Romero-Corral, A., Somers, V. K., Lopez-Jimenez, F., Ohrvik, J., et al. (2009). Concentration of apolipoprotein B is comparable with the apolipoprotein B/apolipoprotein A-I ratio and better than routine clinical lipid measurements in predicting coronary heart disease mortality: Findings from a multi-ethnic US population. European Heart Journal, 30, 710–717.

    Article  CAS  PubMed  Google Scholar 

  4. Kiliçli-Camur, N., Demirtunç, R., Konuralp, C., Eskiser, A., & Başaran, Y. (2005). Could mean platelet volume be a predictive marker for acute myocardial infarction? Medical Science Monitor, 11, CR387–CR392.

    PubMed  Google Scholar 

  5. Aksu, H., Ozer, O., Unal, H., Hobikoglu, G., Norgaz, T., Buturak, A., et al. (2009). Significance of mean platelet volume on prognosis of patients with and without aspirin resistance in settings of non-ST-segment elevated acute coronary syndromes. Blood Coagulation and Fibrinolysis, 20, 686–693.

    Article  CAS  PubMed  Google Scholar 

  6. Schwertner, H. A., Jackson, W. G., & Tolan, G. (1994). Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clinical Chemistry, 40, 18–23.

    CAS  PubMed  Google Scholar 

  7. Troughton, J. A., Woodside, J. V., Young, I. S., Arveiler, D., Amouyel, P., Ferrières, J., et al. (2007). Bilirubin and coronary heart disease risk in the Prospective Epidemiological Study of Myocardial Infarction (PRIME). European Journal of Cardiovascular Prevention and Rehabilitation, 14, 79–84.

    Article  PubMed  Google Scholar 

  8. Blankenberg, S., Luc, G., Ducimetière, P., Arveiler, D., Ferrières, J., Amouyel, P., et al. (2003). Interleukin-18 and the risk of coronary heart disease in European men: The Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation, 108, 2453–2459.

    Article  CAS  PubMed  Google Scholar 

  9. Furtado, M. V., Rossini, A. P., Campani, R. B., Meotti, C., Segatto, M., Vietta, G., et al. (2009). Interleukin-18: An independent predictor of cardiovascular events in patients with acute coronary syndrome after 6 months of follow-up. Coronary Artery Disease, 20, 327–331.

    Article  PubMed  Google Scholar 

  10. Ge, C., Ren, F., Lu, S., Ji, F., Chen, X., & Wu, X. (2009). Clinical prognostic significance of plasma cystatin C levels among patients with acute coronary syndrome. Clinical Cardiology, 32, 644–648.

    Article  PubMed  Google Scholar 

  11. García Acuña, J. M., González-Babarro, E., Grigorian Shamagian, L., Peña-Gil, C., Vidal Pérez, R., López-Lago, A. M., et al. (2009). Cystatin C provides more information than other renal function parameters for stratifying risk in patients with acute coronary syndrome. Revista Espanola De Cardiologia, 62, 510–519.

    Article  PubMed  Google Scholar 

  12. Bautista, L. E., Arenas, I. A., Peñuela, A., & Martínez, L. X. (2002). Total plasma homocysteine level and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Journal of Clinical Epidemiology, 55, 882–887.

    Article  PubMed  Google Scholar 

  13. Breimer, L. H., Wannamethee, G., Ebrahim, S., & Shaper, A. G. (1995). Serum bilirubin and risk of ischemic-heart-disease in middle-aged British men. Clinical Chemistry, 41, 1504–1506.

    CAS  PubMed  Google Scholar 

  14. Hopkins, P. N., Wu, L. L., Hunt, S. C., James, B. C., Vincent, G. M., & Williams, R. R. (1996). Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 250–255.

    Article  CAS  PubMed  Google Scholar 

  15. Djoussé, L., Levy, D., Cupples, L. A., Evans, J. C., D’Agostino, R. B., & Ellison, R. C. (2001). Total serum bilirubin and risk of cardiovascular disease in the Framingham offspring study. The American Journal of Cardiology, 87, 1196–1200.

    Article  PubMed  Google Scholar 

  16. Perlstein, T. S., Pande, R. L., Creager, M. A., Weuve, J., & Beckman, J. A. (2008). Serum total bilirubin level, prevalent stroke, and stroke outcomes: NHANES 1999–2004. American Journal of Medicine, 121, 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hunt, S. C., Kronenberg, F., Eckfeldt, J. H., Hopkins, P. N., Myers, R. H., & Heiss, G. (2001). Association of plasma bilirubin with coronary heart disease and segregation of bilirubin as a major gene trait: The NHLBI family heart study. Atherosclerosis, 154, 747–754.

    Article  CAS  PubMed  Google Scholar 

  18. Xie, X., Ma, Y. T., Fu, Z. Y., Yang, Y. N., Ma, X., Chen, B. D., et al. (2009). Haplotype analysis of the CYP8A1 gene associated with myocardial infarction. Clinical and Applied Thrombosis/Hemostasis, 15, 574–580.

    Article  CAS  Google Scholar 

  19. Xie, X., Ma, Y. T., Fu, Z. Y., Yang, Y. N., Ma, X., Chen, B. D., et al. (2009). Association of polymorphisms of PTGS2 and CYP8A1 with myocardial infarction. Clinical Chemistry and Laboratory Medicine, 47, 347–352.

    Article  CAS  PubMed  Google Scholar 

  20. Xie, X., Ma, Y. T., Yang, Y. N., Fu, Z. Y., Li, X. M., Huang, D., et al. (2010). Polymorphisms in the SAA1/2 gene are associated with carotid intima media thickness in healthy Han Chinese subjects: The Cardiovascular Risk Survey. PLoS ONE, 5, e13997.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kraśniak, A., Drozdz, M., Pasowicz, M., Chmiel, G., Kowalczyk-Michałek, M., Szumilak, D., et al. (2007). Influence of microinflammation and oxidative stress on atherosclerosis progression and calcifications in cardiovascular system of hemodialyzed patients during two years follow-up. Przeglad Lekarski, 64, 140–147.

    PubMed  Google Scholar 

  22. Park, S. J., Kim, Y. H., Park, D. W., Yun, S. C., Ahn, J. M., Song, H. G., et al. (2011). Randomized trial of stents versus bypass surgery for left main coronary artery disease. New England Journal of Medicine, 364, 1718–1727.

    Article  CAS  PubMed  Google Scholar 

  23. Green, R. M., & Flamm, S. (2002). AGA technical review on the evaluation of liver chemistry tests. Gastroenterology, 123, 1367–1384.

    Article  PubMed  Google Scholar 

  24. Lin, J. P., Vitek, L., & Schwertner, H. A. (2010). Serum bilirubin and genes controlling bilirubin concentrations as biomarkers for cardiovascular disease. Clinical Chemistry, 56(10), 1535–1543.

    Article  CAS  PubMed  Google Scholar 

  25. Sedlak, T. W., Saleh, M., Higginson, D. S., Paul, B. D., Juluri, K. R., & Snyder, S. H. (2009). Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proceedings of the National Academy of Sciences USA, 106, 5171–5176.

    Article  CAS  Google Scholar 

  26. Yesilova, Z., Serdar, M., Ercin, C. N., Gunay, A., Kilciler, G., Hasimi, A., et al. (2008). Decreased oxidation susceptibility of plasma low density lipoproteins in patients with Gilbert’s syndrome. Journal of Gastroenterology and Hepatology, 23, 1556–1560.

    Article  CAS  PubMed  Google Scholar 

  27. Breimer, L. H., Wannamethee, G., Ebrahim, S., & Shaper, A. G. (1995). Serum bilimbin and risk of ischemic-heart-disease in middle-aged britishrnen. Clinical Chemistry, 41, 15041508.

    Google Scholar 

  28. Djoussé, L., Levy, D., Cupples, L. A., Evans, J. C., D'Agostino, R. B., & Ellison, R. C. (2001). Total serum bilirubin and risk of cardiovascular disease in the Framingham offspring study. American Journal of Cardiology, 87, 1196–1200.

    Article  PubMed  Google Scholar 

  29. Ajja, R., Lee, D. C., Sui, X., Church, T. S., & Steven, N. B. (2011). Usefulness of serum bilirubin and cardiorespiratory fitness as predictors of mortality in men. American Journal of Cardiology, 108, 1438–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stender, S., Frikke-Schmidt, R., Nordestgaard, B. G., Grande, P., Tybjaerg-Hansen, A., & Tybjaerg-Hansen, A. (2013). Genetically elevated bilirubin and risk of ischaemic heart disease: Three Mendelian randomization studies and a meta-analysis. Journal of Internal Medicine, 273, 59–68.

    Article  CAS  PubMed  Google Scholar 

  31. Mahabadi, A. A., Lehmann, N., Möhlenkamp, S., Kälsch, H., Bauer, M., Schulz, R., et al. (2014). Association of bilirubin with coronary artery calcification and cardiovascular events in the general population without known liver disease: The Heinz Nixdorf Recall study. Clinical Research in Cardiology, 103, 647–653.

    Article  CAS  PubMed  Google Scholar 

  32. Kunutsor, S. K., Bakker, S. J., Gansevoort, R. T., Chowdhury, R., & Dullaart, R. P. (2015). Circulating total bilirubin and risk of incident cardiovascular disease in the general population. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 716–724.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed by Science and Technology Project of Xinjiang (201491181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MM., Gao, Y., Zheng, YY. et al. Association of Fasting Serum Bilirubin Levels with Clinical Outcomes After Percutaneous Coronary Intervention: A Prospective Study. Cardiovasc Toxicol 17, 471–477 (2017). https://doi.org/10.1007/s12012-017-9405-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9405-3

Keywords

Navigation