Skip to main content

Advertisement

Log in

Zinc Transporter 9 (SLC30A9) Expression Is Decreased in the Vaginal Tissues of Menopausal Women

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Our aim was to compare zinc transporter (ZnT/SLC30A, and ZIP/SLC39A) expression between pre- and postmenopausal women in human vaginal tissues. Zinc transporter families are responsible for the maintenance of intracellular zinc concentrations. Zinc has significant effects on the extracellular matrix composition. Vaginal wall biopsies were obtained from seven premenopausal and seven postmenopausal women. mRNA expression of twenty-four zinc transporters was determined by quantitative real-time PCR. Zinc transporter expression at the protein level was assessed by immunohistochemistry. Student’s t test and Mann-Whitney U test were used to compare data. ZnT4 and ZnT9 mRNA expression were significantly lower in postmenopausal women compared with premenopausal women (mean ± SD mRNA expression in relative units, 96.43 ± 140.61 vs. 410.59 ± 304.34, p = 0.03 and 0.62 ± 0.39 vs. 1.13 ± 0.31, p = 0.02). In addition, ZIP2, ZIP3, and ZIP6 mRNA expressions were significantly lower in postmenopausal women compared with premenopausal women (mean ± SD mRNA expression in relative units, 1.11 ± 0.61 vs. 2.29 ± 1.20, p = 0.04; 2.32 ± 1.90 vs. 15.82 ± 12.97, p = 0.02 and 1.10 ± 0.80 vs. 5.73 ± 4.72, p = 0.03). ZnT9 protein expression in the stratum spinosum was significantly lower in postmenopausal women (p = 0.012). Zinc transporters were expressed differentially in the vaginal tissues. ZnT9 expression was significantly lower in postmenopausal women compared with premenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085. https://doi.org/10.1126/science.271.5252.1081

    Article  CAS  PubMed  Google Scholar 

  2. Samman S (2007) Zinc. In: Mann JI, Truswell AS (eds) Essentials of human nutrition, 3rd edn. Oxford University Press, Oxford, pp 138–144

    Google Scholar 

  3. Foster M, Samman S (2010) Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 13:1549–1573. https://doi.org/10.1089/ars.2010.3111

    Article  CAS  PubMed  Google Scholar 

  4. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. https://doi.org/10.1021/pr050361j

    Article  CAS  PubMed  Google Scholar 

  5. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784. https://doi.org/10.1152/physrev.00035.2014

    Article  CAS  PubMed  Google Scholar 

  6. Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172. https://doi.org/10.1146/annurev.nutr.24.012003.132402

    Article  CAS  PubMed  Google Scholar 

  7. Hara T, Takeda T-A, Takagishi T, Fukue K, Kambe T, Fukada T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67(2):283–301. https://doi.org/10.1007/s12576-017-0521-4

    Article  CAS  PubMed  Google Scholar 

  8. Taneja SK, Kaur R (1990) Pathology of ovary, uterus, vagina and gonadotrophs of female mice fed on Zn-deficient diet. Indian J Exp Biol 28(11):1058–1065

    CAS  PubMed  Google Scholar 

  9. Takacs P, Zhang Y, Candiotti K, Jaramillo S, Medina CA (2012) Effects of PPAR-delta agonist and zinc on vaginal smooth muscle cells collagen and tropoelastin production. Int Urogynecol J 23(12):1775–1779. https://doi.org/10.1007/s00192-012-1807-y

    Article  PubMed  Google Scholar 

  10. Takacs P, Jaramillo S, Zhang Y, Datar R, Williams A, Olczyk J, Candiotti K, Medina CA (2013) The effects of PPARδ agonist and zinc on ovariectomized rats' vagina. Female Pelvic Med Reconstr Surg 19(3):126–131. https://doi.org/10.1097/SPV.0b013e31828746e9

    Article  PubMed  Google Scholar 

  11. Maret W (2013) Zinc and human disease. Met Ions Life Sci 13:389–414. https://doi.org/10.1007/978-94-007-7500-8_12

    Article  PubMed  Google Scholar 

  12. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176. https://doi.org/10.1146/annurev-nutr-033009-083312

    Article  PubMed  Google Scholar 

  13. Yang J, Zhang Y, Cui X, Yao W, Yu X, Cen P, Hodges SE, Fisher WE, Brunicardi FC, Chen C, Yao Q, Li M (2013) Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer. Curr Mol Med 13(3):401–409

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Grattan BJ, Freake HC (2012) Zinc and cancer: implications for LIV-1 in breast cancer. Nutrients 4(7):648–675. https://doi.org/10.3390/nu4070648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee JY, Kim JH, Hong SH, Lee JY, Cherny RA, Bush AI, Palmiter RD, Koh JY (2004) Estrogen decreases zinc transporter 3 expression and synaptic vesicle zinc levels in mouse brain. J Biol Chem 279(10):8602–8607. https://doi.org/10.1074/jbc.m309730200

    Article  CAS  PubMed  Google Scholar 

  16. Boreham MK, Wai CY, Miller RT, Schaffer JI, Word RA (2002) Morphometric analysis of smooth muscle in the anterior vaginal wall of women with pelvic organ prolapse. Am J Obstet Gynecol 187:56–63. https://doi.org/10.1067/mob.2002.124843

    Article  PubMed  Google Scholar 

  17. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE Guidelines: M inimum I nformation for Publication of Q uantitative Real-Time PCR E xperiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  18. Martin AB, Aydemir TB, Guthrie GJ, Samuelson DA, Chang SM, Cousins RJ (2013) Gastric and colonic zinc transporter ZIP11 (Slc39a11) in mice responds to dietary zinc and exhibits nuclear localization. J Nutr 143(12):1882–1888. https://doi.org/10.3945/jn.113.184457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilson DJ (2019) The harmonic mean p-value for combining dependent tests. Proc Natl Acad Sci 116(4):1195–1200. https://doi.org/10.1073/pnas.1814092116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang L, Tepaamorndech S (2013) The SLC30 family of zinc transporters – a review of current understanding of their biological and pathophysiological roles. Mol Asp Med 34:548–560. https://doi.org/10.1016/j.mam.2012.05.008

    Article  CAS  Google Scholar 

  21. Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Asp Med 34:612–619. https://doi.org/10.1016/j.mam.2012.05.0111

    Article  CAS  Google Scholar 

  22. Ferreira CR, Gahl WA (2017) Disorders of metal metabolism. Transl Sci Rare Dis 2(3-4):101–139. https://doi.org/10.3233/TRD-170015

    Article  PubMed  PubMed Central  Google Scholar 

  23. Perez Y, Shorer Z, Liani-Leibson K et al (2017) SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain 140(4):928–939. https://doi.org/10.1093/brain/awx013

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kang X, Chen R, Zhang J, Li G, Dai PG, Chen C, Wang HJ (2015) Expression profile analysis of zinc transporters (ZIP4, ZIP9, ZIP11, ZnT9) in gliomas and their correlation with IDH1 mutation status. Asian Pac J Cancer Prev 16(8):3355–3360. https://doi.org/10.7314/apjcp.2015.16.8.3355

    Article  PubMed  Google Scholar 

  25. Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, Zhang S, Liuzzi JP, Chang SM, Cousins RJ, Fisher WE, Brunicardi FC, Logsdon CD, Chen C, Yao Q (2007) Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and, progression. Proc Natl Acad Sci U S A 104:18636–18641. https://doi.org/10.1073/pnas.0709307104

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taylor KM, Morgan HE, Smart K, Zahari NM, Pumford S, Ellis IO, Robertson JFR, Nicholson RI (2007) The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med 13:396–406. https://doi.org/10.2119/2007-00040.Taylor

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takatani-Nakase T (2018) Zinc transporters and the progression of breast cancers. Biol Pharm Bull 41(10):1517–1522. https://doi.org/10.1248/bpb.b18-00086

    Article  CAS  PubMed  Google Scholar 

  28. Yücel I, Arpaci F, Özet A, Döner B, Karayilanoĝlu T, Sayar A, Berk Ö (1994) Serum copper and zinc levels and copper/zinc ratio in patients with breast cancer. Biol Trace Elem Res 40:31–38. https://doi.org/10.1007/BF02916818

    Article  PubMed  Google Scholar 

  29. Lossow K, Kopp JF, Schwarz M et al (2020) Aging affects sex- and organ-specific trace element profiles in mice. Aging (Albany NY) 12:13762–13790. https://doi.org/10.18632/aging.103572

    Article  CAS  Google Scholar 

  30. Zhang B, Podolskiy DI, Mariotti M, Seravalli J, Gladyshev VN (2020) Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell 19:e13119. https://doi.org/10.1111/acel.13119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Novo-Lab Kft. (Agilent Technologies) for providing the ICP-OES 5100 instrument for the measurements.

Funding

This work was supported by GINOP-2.1.1-15-2016-00783.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anett Csikós.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Hungarian National Institutional Review Medical Research Council (approval no. 7239-3/2017EIUG) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

Csikós was former employee of FemPharma LLC. Takacs has received honoraria from FemPharma LLC. For the remaining authors, none were declared.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csikós, A., Kozma, B., Pór, Á. et al. Zinc Transporter 9 (SLC30A9) Expression Is Decreased in the Vaginal Tissues of Menopausal Women. Biol Trace Elem Res 199, 4011–4019 (2021). https://doi.org/10.1007/s12011-020-02525-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02525-w

Keywords

Navigation