Skip to main content
Log in

Improvement of the Anticancer Activities of Telmisartan by Zn(II) Complexation and Mechanisms of Action

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To improve the anticancer activity of telmisartan, its structure has been modified by Zn(II) complexation giving [Zn(Telm)2(H2O)2]·2H2O (ZnTelm). The cytotoxic effect was measured on the human lung cancer cells (A549) and on the lung fibroblast cells (MRC-5). The complex markedly improved anticancer activity (IC50 75 μM) of telmisartan (IC50 125 μM) or ZnSO4 (IC50 225 μM) and did not show toxicity on non-cancer cells, inducing oxidative stress with cellular ROS generation and GSH/GSSG decrease. Apoptosis was the dominant form of cell death for the complex. The Bax/Bcl-XL ratio was significantly increased as well as caspase-3 activation. Both the complex and the ligand bind to bovine serum albumin (BSA) and can be stored and transported by the protein but the interaction with the complex is greater. Telmisartan binds BSA by hydrophobic interactions while the interaction of ZnTelm occurs through van der Waals forces and hydrogen bonding. Therefore, it can be shown that the coordination complex ZnTelm improved the anticancer activity of the antihypertensive drug telmisartan (IC50 75 μM and 125 μM, respectively) and the interaction with BSA.

Improvement of the anticancer activities of telmisartan by Zn(II) complexation and mechanisms of action. Intrinsic apoptotic pathway: induction ofoxidative stress and regulation of proteins related to apoptosis. The complex interacted with bovine serum albumin (BSA) and can be stored and transported by the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burnier M (2009) Telmisartan: a different angiotensin II receptor blocker protecting a different population? J Int Med Res 37:1662–1679. https://doi.org/10.1177/147323000903700602

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Chen L, Yu P, Liu B, Zhu J, Yang Y (2014) Telmisartan exerts anti-tumor effects by activating peroxisome proliferator-activated receptor-γ in human lung adenocarcinoma A549 cells. Molecules 19:2862–2876. https://doi.org/10.3390/molecules19032862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang S, Wang Y (2018) Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol Lett 15:5859–5864. https://doi.org/10.3892/ol.2018.8002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rasheduzzaman M, Moon JH, Lee JH, Nazim UM, Park SY (2018) Telmisartan generates ROS-dependent upregulation of death receptor 5 to sensitize TRAIL in lung cancer via inhibition of autophagy flux. Int J Biochem Cell Biol 102:20–30. https://doi.org/10.1016/j.biocel.2018.06.006

    Article  CAS  PubMed  Google Scholar 

  5. Livingstone C (2015) Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract 30:371–382. https://doi.org/10.1177/0884533615570376

    Article  CAS  PubMed  Google Scholar 

  6. Marreiro D, Cruz K, Morais J et al (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6:1–24. https://doi.org/10.3390/antiox6020024

    Article  CAS  Google Scholar 

  7. Ho E, Ames BN (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NF B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci 99:16770–16775. https://doi.org/10.1073/pnas.222679399

    Article  CAS  PubMed  Google Scholar 

  8. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15:572–578. https://doi.org/10.1016/j.jnutbio.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  9. Zhao JNA, Mi L, Hu J, Hou H, Fan Y (2008) Cation exchange induced tunable properties of a nanoporous octanuclear Cu(II) wheel with double-helical structure. J Am Chem Soc 130:15222–15223. https://doi.org/10.1021/ja8007227

    Article  CAS  PubMed  Google Scholar 

  10. Lee HW, Kang LH, Yoo CL, et al (2010) The new telmisartan zinc salt and the preparation thereof. Patent WO/2010/053233 1–15

  11. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. https://doi.org/10.1016/0003-2697(76)90326-2

    Article  CAS  PubMed  Google Scholar 

  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  13. Wu X (2015) Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 21:15–20. https://doi.org/10.12659/MSMBR.893327

    Article  PubMed  PubMed Central  Google Scholar 

  14. Islas MS, Martínez Medina JJ, López Tévez LL et al (2014) Antitumoral, antihypertensive, antimicrobial, and antioxidant effects of an octanuclear copper(II)-telmisartan complex with an hydrophobic nanometer hole. Inorg Chem 53:5724–5737. https://doi.org/10.1021/ic500483p

    Article  CAS  PubMed  Google Scholar 

  15. Bano S, Mohd A, Aslam A et al (2010) Complexation and mechanism of fluorescence quenching of telmisartan with Y (III) and Nd (III). J Chem Eng Data 55:5759–5765. https://doi.org/10.1021/je100711u

    Article  CAS  Google Scholar 

  16. Bakheit AHH, Abd-Elgalil AA, Mustafa B et al (2015) Telmisartan. Profiles Drug Subst Excipients Relat Methodol 40:371–429. https://doi.org/10.1016/bs.podrm.2015.01.003

    Article  CAS  Google Scholar 

  17. Sanjeev Kumar A, Ghosh S, Mehta GN (2010) Efficient and convergent synthesis of telmisartan. Res J Pharm, Biol Chem Sci 1:461–468. https://doi.org/10.3762/bjoc.6.25

    Article  CAS  Google Scholar 

  18. Godugu C, Patel AR, Doddapaneni R, Marepally S, Jackson T, Singh M (2013) Inhalation delivery of telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J Control Release 172:86–95. https://doi.org/10.1016/j.jconrel.2013.06.036s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kozako T, Soeda S, Yoshimitsu M, Arima N, Kuroki A, Hirata S, Tanaka H, Imakyure O, Tone N, Honda S, Soeda S (2016) Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells. FEBS Open Bio 6:442–460. https://doi.org/10.1002/2211-5463.12055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Provinciali M, Donnini A, Argentati K, di Stasio G, Bartozzi B, Bernardini G (2002) Reactive oxygen species modulate Zn2+-induced apoptosis in cancer cells. Free Radic Biol Med 32:431–445. https://doi.org/10.1016/S0891-5849(01)00830-9

    Article  CAS  PubMed  Google Scholar 

  21. Romero-Canelón I, Mos M, Sadler PJ (2015) Enhancement of selectivity of an organometallic anticancer agent by redox modulation. J Med Chem 58:7874–7880. https://doi.org/10.1021/acs.jmedchem.5b00655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kocdor H, Ates H, Aydin S, Cehreli R, Soyarat F, Kemanli P, Harmanci D, Cengiz H, Kocdor MA (2015) Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer. Drug Des Devel Ther 9:3899–3909. https://doi.org/10.2147/DDDT.S87662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lovelace M, Cahill D (2007) A rapid cell counting method utilising acridine orange as a novel discriminating marker for both cultured astrocytes and microglia. J Neurosci Methods 165:223–229. https://doi.org/10.1016/j.jneumeth.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  24. Brunk UT, Neuzil J, Eaton JW (2001) Lysosomal involvement in apoptosis. Redox Rep 6:91–97. https://doi.org/10.1179/135100001101536094

    Article  CAS  PubMed  Google Scholar 

  25. de Araújo Júnior RF, Leitão Oliveira ALC, de Melo Silveira RF, de Oliveira Rocha HA, de França Cavalcanti P, de Araújo AA (2015) Telmisartan induces apoptosis and regulates Bcl-2 in human renal cancer cells. Exp Biol Med 240:34–44. https://doi.org/10.1177/1535370214546267

    Article  CAS  Google Scholar 

  26. Fasano M, Curry S, Terreno E et al (2005) The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57:787–796. https://doi.org/10.1080/15216540500404093

    Article  CAS  PubMed  Google Scholar 

  27. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    CAS  PubMed  Google Scholar 

  28. Verdasco G, Martín MA, del Castillo B et al (1995) Solvent effects on the fluorescent emission of some new benzimidazole derivatives. Anal Chim Acta 303:73–78. https://doi.org/10.1016/0003-2670(94)00365-S

    Article  CAS  Google Scholar 

  29. Topală T, Bodoki A, Oprean L, Oprean R (2014) Bovine serum albumin interactions with metal complexes. Med Pharm Rep 87:215–219. https://doi.org/10.15386/cjmed-357

    Article  Google Scholar 

  30. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Zhu X, Yang C, Shi R (2010) Characterization of the binding of angiotensin II receptor blockers to human serum albumin using docking and molecular dynamics simulation. J Mol Model 16:789–798. https://doi.org/10.1007/s00894-009-0612-0

    Article  CAS  PubMed  Google Scholar 

  32. Prasad AS, Beck FWJ, Snell DC, Kucuk O (2009) Zinc in cancer prevention. Nutr Cancer 61:879–887. https://doi.org/10.1080/01635580903285122

    Article  CAS  PubMed  Google Scholar 

  33. Zhao WJ, Song Q, Zhang ZJ et al (2015) The kinetic response of the proteome in A549 cells exposed to ZnSO4 stress. PLoS One 10:1–21. https://doi.org/10.1371/journal.pone.0133451

    Article  CAS  Google Scholar 

  34. Yuan N, Wang Y-H, Li K-J et al (2012) Effects of exogenous zinc on the cellular zinc distribution and cell cycle of A549 cells. Biosci Biotechnol Biochem 76:2014–2020. https://doi.org/10.1271/bbb.120216

    Article  CAS  PubMed  Google Scholar 

  35. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132. https://doi.org/10.1158/1078-0432.CCR-08-0144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang C, Wang W (2018) Telmisartan induces osteosarcoma cells growth inhibition and apoptosis via suppressing mTOR pathway. Open Life Sci 13:242–249. https://doi.org/10.1515/biol-2018-0029

    Article  CAS  Google Scholar 

  37. Koyama N, Nishida Y, Ishii T, Yoshida T, Furukawa Y, Narahara H (2014) Telmisartan induces growth inhibition, DNA double-strand breaks and apoptosis in human endometrial cancer cells. PLoS One 9:e93050. https://doi.org/10.1371/journal.pone.0093050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martínez VR, Aguirre MV, Todaro JS, Piro OE, Echeverría GA, Naso LG, Ferrer EG, Williams PAM (2018) Interaction of Zn with losartan. Activation of intrinsic apoptotic signaling pathway in lung cancer cells and effects on alkaline and acid phosphatases. Biol Trace Elem Res 186:413–429. https://doi.org/10.1007/s12011-018-1334-x

    Article  CAS  PubMed  Google Scholar 

  39. Martínez VR, Aguirre MV, Todaro JS et al (2018) Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin. Toxicol in Vitro 48:205–220. https://doi.org/10.1016/j.tiv.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  40. Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13:7271–7279. https://doi.org/10.1158/1078-0432.CCR-07-1595

    Article  CAS  PubMed  Google Scholar 

  41. Matsui T, Chiyo T, Kobara H et al (2019) Telmisartan inhibits cell proliferation and tumor growth of esophageal squamous cell carcinoma by inducing S-phase arrest in vitro and in vivo. Int J Mol Sci 20:1–14. https://doi.org/10.3390/ijms20133197

    Article  CAS  Google Scholar 

  42. Zhao M, Antunes F, Eaton JW, Brunk UT (2003) Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem 270:3778–3786. https://doi.org/10.1046/j.1432-1033.2003.03765.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The following grants supported this work: UNLP [X/736], CONICET [PIP 0611], CICPBA and ANPCyT (PICT-2016-1814) Argentina. VRM is CONICET fellowship holder, and EGF and PAMW are research fellows of CONICET and CICPBA, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. M. Williams.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, V.R., Aguirre, M.V., Todaro, J.S. et al. Improvement of the Anticancer Activities of Telmisartan by Zn(II) Complexation and Mechanisms of Action. Biol Trace Elem Res 197, 454–463 (2020). https://doi.org/10.1007/s12011-019-02013-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-02013-w

Keywords

Navigation