Skip to main content
Log in

Effect of Zinc Supplementation on Semen Quality, Sperm Antioxidant Ability, and Seminal and Blood Plasma Mineral Profiles in Cashmere Goats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study evaluated the effects of the different dietary zinc (Zn) levels on semen quality, on spermatozoa and seminal plasma antioxidant status, and on the seminal and blood plasma mineral status in mature male Cashmere goats during the breeding season. Twenty-eight mature male Liaoning Cashmere goats were divided into four groups based on body weight (56.2 ± 2.45 kg) and semen characteristics; these goats were fed with basal diet supplemented with 0, 20, 40, or 80 mg Zn/kg DM (zinc sulfate) for 3 months. Results showed that the Zn-supplemented diets linearly increased the semen volume (0.98, 1.04, 1.27, and 1.17 ml for the 0, 20, 40, and 80 mg Zn/kg DM supplementation, respectively) (P < 0.05) and the total sperm output (3.87, 4.52, 5.73, and 5.33 × 109/ml for the 0, 20, 40, and 80 mg Zn/kg DM supplementation, respectively) (P < 0.05); by contrast, Zn supplementation exerted no effect on sperm concentration, motility, and abnormal sperms rate. The activities of copper zinc superoxide dismutase (CuZn-SOD) (linear P < 0.05) and glutathione peroxidase (GSH-Px) (linear P < 0.05; quadratic P < 0.01) were highest in the intermediate supplementation (40 mg Zn/kg DM). Moreover, the malondialdehyde (MDA) content of spermatozoa decreased linearly (P < 0.01) with the increase in Zn supplementation. In seminal plasma, the highest GSH-Px activity was observed in 20 mg Zn/kg DM supplementation (P < 0.05). Catalase (CAT) activities both in the spermatozoa and seminal plasma showed no difference in all treatments. Seminal plasma Zn level was highest in 40 mg Zn/kg DM (linear P = 0.068), and K increased linearly (P = 0.001) with increasing Zn level. Furthermore, blood plasma Zn (linear P < 0.01; quadratic P < 0.05), Fe (linear P < 0.05; quadratic P < 0.05), and Mg (linear P < 0.05) increased with increasing Zn supplementation. These results indicated that dietary Zn supplementation in Cashmere goats during the breeding season improved the semen quality and quantity, elevated the antioxidative indices and Zn concentration, and decreased the MDA content both in spermatozoa and seminal plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yamaguchi S, Miura C, Kikuchi K, Celino FT, Agusa T, Tanabe S, Miura T (2009) Zinc is an essential trace element for spermatogenesis. PNAS US 106(26):10859–10864. https://doi.org/10.1073/pnas.0900602106

    Article  Google Scholar 

  2. Martin GB, White CL (1992) Effects of dietary zinc deficiency on gonadotrophin secretion and testicular growth in young male sheep. J Reprod Fertil 96:497–507. https://doi.org/10.1530/jrf.0.0960497

    Article  CAS  PubMed  Google Scholar 

  3. Martin GB, White CL, Markey CM, Blackberry MA (1994) Effects of dietary zinc deficiency on the reproductive system of young male sheep: testicular growth and the secretion of inhibin and testosterone. J Reprod Fertil 101:87–96. https://doi.org/10.1530/jrf.0.1010087

    Article  CAS  PubMed  Google Scholar 

  4. Kumar P, Yadav B, Yadav S (2013) Effect of zinc and selenium supplementation on antioxidative status of seminal plasma and testosterone, T4 and T3 level in goat blood serum. J Appl Anim Res 41(4):382–386. https://doi.org/10.1080/09712119.2013.783482

    Article  CAS  Google Scholar 

  5. Liu HY, Sun MH, Yang GQ, Jia CL, Zhang M, Zhu YJ, Yong Z (2015) Influence of different dietary zinc levels on cashmere growth, plasma testosterone level and zinc status in male Liaoning Cashmere goats. J Anim Phys Anim Nutr 99(5):880–886. https://doi.org/10.1111/jpn.12292

    Article  CAS  Google Scholar 

  6. Chia SE, Ong CN, Chua LH, Ho LM, Tay SK (2000) Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J Androl 21:53–57. https://doi.org/10.1002/j.1939-4640.2000.tb03275.x

    Article  CAS  PubMed  Google Scholar 

  7. Colagar AH, Marzony ET, Chaichi MJ (2009) Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res 29:82–88. https://doi.org/10.1016/j.nutres.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  8. El-Masry KA, Nasr AS, Kamal TH (1994) Influences of season and dietary supplementation with selenium and vitamin E or zinc on some blood constituents and semen quality of New Zealand white rabbit males. World Rabbit Sci 2(3):79–86 https://riunet.upv.es/bitstream/handle/10251/10540/221-371-1-SM.pdf

    Google Scholar 

  9. Kendall NR, McMullen S, Green A, Rodway RG (2000) The effect of a zinc, cobalt and selenium soluble glass bolus on trace element status and semen quality of ram lambs. Anim Reprod Sci 62:277–283. https://doi.org/10.1016/S0378-4320(00)00120-2

    Article  CAS  PubMed  Google Scholar 

  10. Kumar N, Verma RP, Singh LP, Varshney Dass RS (2006) Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus x Bos Taurus) bulls. Reprod Nutr Dev 46:663–675. https://doi.org/10.1051/rnd:2006041

    Article  CAS  PubMed  Google Scholar 

  11. Ghasemi N, Babaei H, Azizallahi S, Kheradmand A (2009) Effect of long-term administration of zinc after scrotal heating on mice spermatozoa and subsequent offspring quality. Andrologia 41:222–228. https://doi.org/10.1111/j.1439-0272.2009.00920.x

    Article  CAS  PubMed  Google Scholar 

  12. De Lamirande E, Gagnon C (1995) Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod 10(Suppl 1):15–21. https://doi.org/10.1093/humrep/10.suppl_1.15

    Article  CAS  PubMed  Google Scholar 

  13. Aitken RJ, Baker MA (2004) Oxidative stress and male reproductive biology. Reprod Fertil Dev 16:581–588. https://doi.org/10.1071/RD03089

    Article  CAS  PubMed  Google Scholar 

  14. Sikka SC (1996) Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci 1:e78–e86. https://doi.org/10.2741/A146

    Article  CAS  PubMed  Google Scholar 

  15. Sheikh AA, Aggarwal A, B I, Aarif O (2017) Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows. Theriogenology 95:75–82. https://doi.org/10.1016/j.theriogenology.2017.02.024

    Article  CAS  PubMed  Google Scholar 

  16. Taylor CG, Bettger WJ, Bray TM (1988) Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats. J Nutr 118:613–621

    Article  CAS  PubMed  Google Scholar 

  17. Oteiza PI, Olin KL, Fraga CG, Keen CL (1995) Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nutr 125:823–829 https://jn.nutrition.org/content/125/4/823.full.pdf

    CAS  PubMed  Google Scholar 

  18. Zago MP, Oteiza PI (2001) The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radic Biol Med 31:266–274. https://doi.org/10.1016/S0891-5849(01)00583-4

    Article  CAS  PubMed  Google Scholar 

  19. Jia WB, Jia ZH, Zhang WR, Wang LS, Zhang W, Zhu XP (2008) Effects of dietary zinc on performance, nutrient digestibility and plasma zinc status in Cashmere goats. Small Rumin Res 80:68–72. https://doi.org/10.1016/j.smallrumres.2008.09.009

    Article  Google Scholar 

  20. Marti E, Marti JI, Muiňo-Blanco T, Cebrián-Préz JA (2008) Effect of the cryopreservation process on the activity and immunolocalization of antioxidant enzymes in ram spermatozoa. J Androl 29:459–467. https://doi.org/10.2164/jandrol.107.003459

    Article  CAS  PubMed  Google Scholar 

  21. Marin GJ, Mahan DC, Chung YK, Pate JL, Pope WF (1997) Effects of dietary selenium and vitamin E on boar performance and tissue responses, semen quality and subsequent fertilization rates in mature gilts. J Anim Sci 75:2994–3003. https://doi.org/10.2527/1997.75112994x

    Article  Google Scholar 

  22. Kasimanicham R, Kasimanicham V, Thatcher CD, Nebel RL, Cassell BG (2007) Relationships among lipid peroxidation, glutathione peroxidase, superoxide dismutase, sperm parameters, and competitive index in dairy bulls. Theriogenology 67:1004–1012. https://doi.org/10.1016/j.theriogenology.2006.11.013

    Article  CAS  Google Scholar 

  23. Mustafa NB, Serpil S, Pürhan BT, Pınar AU, Halil IA (2009) Effect of antioxidants on microscopic semen parameters, lipid peroxidation and antioxidant activities in Angora goat semen following cryopreservation. Small Rumin Res 81:90–95. https://doi.org/10.1016/j.smallrumres.2008.11.011

    Article  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  25. Littell RC, Henry PR, Ammerman CB (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76:1216–1231. https://doi.org/10.2527/1998.7641216x

    Article  CAS  PubMed  Google Scholar 

  26. SAS (2011) SAS/STAT® 9.3 User’s Guide. SAS Inst. Inc., Cary

    Google Scholar 

  27. Rahman HU, Qureshi MS, Khan RU (2014) Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of beetal bucks. Reprod Domest Anim 49(6):1004–1007. https://doi.org/10.1111/rda.12422

    Article  CAS  PubMed  Google Scholar 

  28. Sabhapati M, Raina VS, Bhakat M, Mohanty TK, Shivahre PR, Mondal G, Gupta AK (2016) Improvement of sexual behavior and semen quality by therapeutic approach and zinc supplementation on Karan Fries. I. J Anim Sci 86(6):53–56 https://www.researchgate.net/profile/Mukesh_Bhakat/publication/305177146_Improvement_of_sexual_behavior_and_semen_quality_by_therapeutic_approach_and_zinc_supplementation_on_Karan_Fries/links/57e13f4308aedcda857bf47d.pdf

    Google Scholar 

  29. Gavella M, Lipovac V, Vučić M, Šverko V (1999) In vitro inhibition of superoxide anion production and superoxide dismutase activity by zinc in human spermatozoa. Int J Androl 22(4):266–274. https://doi.org/10.1046/j.1365-2605.1999.00179.x

    Article  CAS  PubMed  Google Scholar 

  30. Prasad AS, Bao B, Beck FWJ, Kucuk O, Sarkar FH (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37(8):1182–1190. https://doi.org/10.1016/j.freeradbiomed.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  31. Song Y, Leonard SW, Traber MG, Ho E (2009) Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr 139:1626–1631. https://doi.org/10.3945/jn.109.106369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Omu AE, Al-Azemi MK, Kehinde EO, Anim JT, Oriowo MA, Mathew TC (2008) Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract 17:108–116. https://doi.org/10.1159/000112963

    Article  CAS  PubMed  Google Scholar 

  33. Stoltenberg M, Ernst E, Andreasen A, Danscher G (1996) Histochemical localization of zinc ions in the epididymis of the rat. Histochem J 28:173–185. https://doi.org/10.1007/BF02331441

    Article  CAS  PubMed  Google Scholar 

  34. Khan RU (2011) Antioxidants and poultry semen quality. Worlds Poult Sci J 67:297–308. https://doi.org/10.1017/S0043933911000316

    Article  Google Scholar 

  35. Huang YL, Tseng WC, Cheng SY, Lin TH (2000) Trace elements and lipid peroxidation in human seminal plasma. Biol Trace Elem Res 76:207–215. https://doi.org/10.1385/BTER:76:3:207

    Article  CAS  PubMed  Google Scholar 

  36. Virgili F, Canali R, Figus E, Vignolini F, Nobili F, Mengheri E (1999) Intestinal damage induced by zinc deficiency is associated with enhanced CuZn superoxide dismutase activity in rats: effect of dexamethasone or thyroxine treatment. Free Radic Biol Med 26:1194–1201. https://doi.org/10.1016/S0891-5849(98)00307-4

    Article  CAS  PubMed  Google Scholar 

  37. Alavi-Shoushtari SM, Rezai SA, Ansari MH, Khaki A (2009) Effects of seminal plasma zinc content and catalase activity on semen quality of water buffalo (Bubalus bubalis) bulls. Pak J Biol Sci 12(2):134–139 http://docsdrive.com/pdfs/ansinet/pjbs/2009/134-139.pdf

    Article  CAS  PubMed  Google Scholar 

  38. Lewis-Jones DI, Aird IA, Biljan MM, Kingsland CR (1996) Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Hum Reprod 11:2465–2467. https://doi.org/10.1093/oxfordjournals.humrep.a019138

    Article  CAS  PubMed  Google Scholar 

  39. Mogielnicka-Brzozowska M, Wysocki P, Strzezek J, Kordan W (2011) Zinc–binding proteins from boar seminal plasma - isolation, biochemical characteristics and influence on spermatozoa stored at 4 °C. Acta Biochim Pol 58:171–177 http://www.actabp.pl/pdf/2_2011/171.pdf

    Article  CAS  PubMed  Google Scholar 

  40. Massányi P, Trandzik J, Nad P, Toman R, Skalická M, Koreneková B (2003) Seminal concentrations of trace elements in various animals and their correlations. Asian J Androl 5:101–104. https://doi.org/10.1016/S0003-4401(03)00048-2

    Article  PubMed  Google Scholar 

  41. Roy B, Nagpaul PK, Pankaj PK, Mohanty TK (2017) Effect of inorganic and organic zinc supplementation on feed intake, blood and seminal plasma mineral profile in crossbred bulls. Indian J Anim Nutr 34(1):109–113. https://doi.org/10.5958/2231-6744.2017.00018.4

    Article  CAS  Google Scholar 

  42. Garg A, Mudgal V, Dass R (2008) Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Anim Feed Sci Technol 144(1):82–96

    Article  CAS  Google Scholar 

  43. Aliarabi H, Fadayifar A, Tabatabaei MM, Zamani P, Bahari A, Farahavar A, Dezfoulian AH (2015) Effect of zinc source on hematological, metabolic parameters and mineral balance in lambs. Biol Trace Elem Res 168:82–90. https://doi.org/10.1007/s12011-015-0345-0

    Article  CAS  PubMed  Google Scholar 

  44. Narasimhaiah M, Arunachalam A, Sellappan S, Mayasula VK, Guvvala PR, Ghosh SK, Chandra V, Ghosh J, Kumar H (2018) Organic zinc and copper supplementation on antioxidant protective mechanism and their correlation with sperm functional characteristics in goats. Reprod Domest Anim 53:644–654. https://doi.org/10.1111/rda.13154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural science Foundation of Liaoning Province (No. 201602662) and in part by the earmarked fund for Modern Agro-industry Technology Research System (CARS-39-10). The authors would like to thank the staff of the Liaoning Cashmere Breeding Center for the collection and measurement of semen samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqin Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, Y., Zhao, J. et al. Effect of Zinc Supplementation on Semen Quality, Sperm Antioxidant Ability, and Seminal and Blood Plasma Mineral Profiles in Cashmere Goats. Biol Trace Elem Res 196, 438–445 (2020). https://doi.org/10.1007/s12011-019-01933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01933-x

Keywords

Navigation