Skip to main content
Log in

Effects of Dietary Organic, Inorganic, and Nanoparticulate Zinc on Rainbow Trout, Oncorhynchus mykiss Larvae

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was conducted to investigate the effects of different dietary zinc sources on growth performance, survival, and body composition of larval rainbow trout, Oncorhynchus mykiss. A total of 3240 larvae with an average weight of 82.3 ± 11.6 mg were randomly divided into four groups by three replicates and were fed for 70 days. Organic zinc (Zn-proteinate, Bioplex Zn®), mineral zinc (ZnSO4), and nanoparticulate zinc (ZnO-NPs) were each added to the basal diet at 50-mg/kg diet. In all of the zinc-supplemented groups, final body weight (FBW) and weight gain (WG) increased significantly (P < 0.05) compared to the control at the termination of the feeding trial. There was no significant difference in specific growth rate (SGR) in experimental groups. Fish fed with mineral and nanoparticulate zinc, respectively, demonstrated the highest and lowest survival rates (P < 0.05) as compared to other experimental diets. Feed conversion ratio (FCR) significantly decreased (P < 0.05) in groups fed with organic and mineral zinc. There were no significant differences in protein, lipid, moisture, and ash content among fish fed the experimental diets. Fish fed mineral zinc showed the highest (P < 0.05) zinc content in the whole body than the other groups. The data of the present study confirm positive effects of the use of 50 mg kg−1 of zinc sources in early diet to enhance growth performance of rainbow trout larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antony Jesu Prabhu P, Schrama JW, Kaushik SJ (2016) Mineral requirements of fish: a systematic review. Rev Aquac 8(2):172–219

    Article  Google Scholar 

  2. AOAC (Association of Official Analytical Chemists) (1990) Official methods of analysis of the Association of Official Analytical Chemists, 15th edn. Association of Official Analytical chemists, Arlington

    Google Scholar 

  3. Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446:25–29

    Article  CAS  Google Scholar 

  4. Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, Chai Z (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12(5):1645–1654

    Article  CAS  Google Scholar 

  5. Basuini MFE, El-Hais AM, Dawood MAO, Abou-Zeid AE, EL-Damrawy SZ, Khalafalla MME, Koshio S, Ishikawa M, Dossou S (2016) Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of red sea bream (Pagrus major). Aquaculture 455:32–40

    Article  CAS  Google Scholar 

  6. Buentello JA, Goff JB, Gatlin DM (2009) Dietary zinc requirement of hybrid striped bass, Morone chrysops× Morone saxatilis, and bioavailability of two chemically different zinc compounds. J World Aquacult Soc 40(5):687–694

    Article  Google Scholar 

  7. Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J Exp Biol 206(1):11–23

    Article  CAS  PubMed  Google Scholar 

  8. Chupani L, Zusková E, Niksirat H, Panáček A, Lünsmann V, Haange S-B, von Bergen M, Jehmlich N (2017) Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci Total Environ 579:1504–1511

    Article  CAS  PubMed  Google Scholar 

  9. Chupani L, Niksirat H, Lünsmann V, Haange SB, von Bergen M, Jehmlich, Zusková E (2018a) Insight into the modulation of intestinal proteome of juvenile common carp (Cyprinus carpio L.) after dietary exposure to ZnO nanoparticles. Sci Total Environ 613–614:62–71

    Article  CAS  PubMed  Google Scholar 

  10. Chupani L, Niksirat H, Velisek J, Stara A, Hradilová Š, Kolařík J, Panáček A, Zuskova E (2018b) Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicol Environ Saf 147:110–116

    Article  CAS  PubMed  Google Scholar 

  11. Elia AC, Prearo M, Pacini N, Dörr AJM, Abete MC (2011) Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol Environ Saf 74(2):166–173

    Article  CAS  PubMed  Google Scholar 

  12. Faiz H, Zuberi A, Nazir S, Rauf M, Younus N (2015) Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int J Agric Biol 17(3):568–574

    Article  CAS  Google Scholar 

  13. FAO (2018) Global Production Statistics 1950–2016 (Derived from FishStatJ version 3.04.4, March 2018), FAO Yearbook of Fishery and Aquaculture Statistics

  14. Feng JWQM, Ma WQ, Niu HH, Wu XM, Wang Y (2010) Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biol Trace Elem Res 133(2):203–211

    Article  CAS  PubMed  Google Scholar 

  15. Gatlin DM III, O'Connell JP, Scarpa J (1991) Dietary zinc requirement of the red drum, Sciaenops ocellatus. Aquaculture 92:259–265

    Article  CAS  Google Scholar 

  16. Hamre K, Yúfera M, Rønnestad I, Boglione C, Conceição LE, Izquierdo M (2013) Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev Aquac 5(1):26–58

    Article  Google Scholar 

  17. Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110

    Article  CAS  PubMed  Google Scholar 

  18. Izquierdo MS, Ghrab W, Roo J, Hamre K, Hernández-Cruz CM, Bernardini G, Terova G, Saleh R (2017) Organic, inorganic and nanoparticles of se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquac Res 48(6):2852–2867

    Article  CAS  Google Scholar 

  19. Jeng SS, Sun LT (1981) Effects of dietary zinc levels on zinc concentrations in tissues of common carp. J Nutr 111(1):134–140

    Article  CAS  PubMed  Google Scholar 

  20. Ketola HG (1978) Dietary zinc prevents cataract in trout. FASEB J 37:584

    Google Scholar 

  21. Ketola HG (1979) Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). J Nutr 109:965–969

    Article  CAS  PubMed  Google Scholar 

  22. Kumar N, Krishnani KK, Kumar P, Singh NP (2017) Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. J Therm Biol 70(B):61–68

    Article  CAS  PubMed  Google Scholar 

  23. Liang JJ, Yang HJ, Liu YJ, Tian LX, Liang GY (2012) Dietary requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquac Nutr 18:380–387

    Article  CAS  Google Scholar 

  24. Lin TY, Chen YH, Liu CL, Jeng SS (2011) Role of high zinc levels in the stress defense of common carp. Fish Sci 77(4):557–574

    Article  CAS  Google Scholar 

  25. Liu ZH, Lu L, Li SF, Zhang LY, Xi L, Zhang KY, Luo XG (2011) Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poult Sci 90(8):1782–1790

    Article  CAS  PubMed  Google Scholar 

  26. Mansouri B, Johari SA, Azadi NA, Sarkheil M (2018) Effects of waterborne ZnO nanoparticles and Zn2+ ions on the gills of rainbow trout (Oncorhynchus mykiss): bioaccumulation, histopathological and ultrastructural changes. Turk J Fish Aquat Sci 18:739–746

    Article  Google Scholar 

  27. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Manickam N, Srinivasan V (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biol Trace Elem Res 160(1):56–66

    Article  CAS  PubMed  Google Scholar 

  28. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Srinivasan V, Santhanam P (2015) Effects of dietary zinc on the growth, digestive enzyme activities, muscle biochemical compositions, and antioxidant status of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 448:98–104

    Article  CAS  Google Scholar 

  29. Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017a) Combined or individual effects of dietary vitamin E and selenium nanoparticles on humoral immune status and serum parameters of rainbow trout (Oncorhynchus mykiss) under high stocking density. Aquaculture 474:40–47

    Article  CAS  Google Scholar 

  30. Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017b) Effects of dietary vitamin E and selenium nanoparticles supplementation on acute stress responses in rainbow trout (Oncorhynchus mykiss) previously subjected to chronic stress. Aquaculture 473:215–222

    Article  CAS  Google Scholar 

  31. Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017c) Proteomic analysis of liver tissue from rainbow trout (Oncorhynchus mykiss) under high rearing density after administration of dietary vitamin E and selenium nanoparticles. Comp Biochem Physiol Part D Genomics Proteomics 22:10–19

    Article  CAS  PubMed  Google Scholar 

  32. Ogino C, Yang GY (1978) Requirement of rainbow trout for dietary zinc. Bull Jpn Soc Sci Fish 44(9):1015–1018

    Article  CAS  Google Scholar 

  33. Ogino C, Yang GY (1979) Requirement of carp for dietary zinc. Bull Jpn Soc Sci Fish 45(8):967–969

    Article  CAS  Google Scholar 

  34. Passerini A, Andreini C, Menchetti S, Rosato A, Frasconi P (2007) Predicting zinc binding at the proteome level. BMC Bioinf 8:39

    Article  CAS  Google Scholar 

  35. Raya SDHA, Hassan MI, Farroh KY, Hashim SA, Salaheldin TA (2016) Zinc oxide nanoparticles fortified biscuits as a nutritional supplement for zinc deficient rats. J Nanopart Res 4(2):81–87

    Google Scholar 

  36. Rider SA, Davies SJ, Jha AN, Clough R, Sweetman JW (2010) Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. J Anim Physiol Anim Nutr 94(1):99–110

    Article  CAS  Google Scholar 

  37. Sadeghian S, Kojouri GA, Mohebbi A (2012) Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biol Trace Elem Res 146(3):302–308

    Article  CAS  PubMed  Google Scholar 

  38. Saffari S, Keyvanshokooh S, Zakeri M, Johari SA, Pasha-Zanoosi H (2017) Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac Nutr 23(3):611–617

    Article  CAS  Google Scholar 

  39. Saffari S, Keyvanshokooh S, Zakeri M, Johari SA, Pasha-Zanoosi H, Torfi Mozanzadeh M (2018) Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiol Biochem 44(4):1087–1097

    Article  CAS  PubMed  Google Scholar 

  40. Scott NR (2005) Nanotechnology and animal health. Rev Sci Tech 24(1):425–432

    Article  CAS  PubMed  Google Scholar 

  41. Tan B, Mai K (2001) Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture 192(1):67–84

    Article  CAS  Google Scholar 

  42. Wang H, Zhu H, Wang X, Li E, Du Z, Qin J, Chen L (2018) Comparison of copper bioavailability in copper-methionine, nano-copper oxide and copper sulfate additives in the diet of Russian sturgeon Acipenser gueldenstaedtii. Aquaculture 482:146–154

    Article  CAS  Google Scholar 

  43. Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151(1–4):185–207

    Article  CAS  Google Scholar 

  44. Wekell JC, Shearer KD, Houle CR (1983) High zinc supplementation of rainbow trout diets. Prog Fish Cult 45(3):144–147

    Article  CAS  Google Scholar 

  45. Wekell JC, Shearer KD, Gauglitz EJ (1986) Zinc supplementation of trout diets: tissue indicators of body zinc status. Prog Fish Cult 48:205–212

    Article  CAS  Google Scholar 

  46. Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

    Article  CAS  PubMed  Google Scholar 

  47. Zhao CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160(3):361–367

    Article  CAS  PubMed  Google Scholar 

  48. Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291(1–2):78–81

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the University of Kurdistan (UOK, Iran) under the research grant No. GRC96-06503-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Johari.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahpar, Z., Johari, S.A. Effects of Dietary Organic, Inorganic, and Nanoparticulate Zinc on Rainbow Trout, Oncorhynchus mykiss Larvae. Biol Trace Elem Res 190, 535–540 (2019). https://doi.org/10.1007/s12011-018-1563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1563-z

Keywords

Navigation