Skip to main content

Advertisement

Log in

Strontium Promotes Transforming Growth Factors β1 and β2 Expression in Rat Chondrocytes Cultured In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The transforming growth factors β1 (TGF-β1) and TGF-β2, as two distinct homodimers of TGF-β superfamily, involve in chondrocyte growth and differentiation. Emerging evidence has implied that strontium (Sr) plays an important role in the bone formation and resorption, and has strong effects on stimulating human cartilage matrix formation in vitro. However, the direct effects of Sr on TGF-β1 and TGF-β2 expressions in chondrocytes are not entirely clear. The purpose of this study was to evaluate the influence of different Sr concentrations on the expression of TGF-β1 and TGF-β2 in rat chondrocytes in vitro. Chondrocytes were isolated from Wistar rat articular by enzymatic digestion. Strontium chloride hexahydrate (SrCl2·6H2O) was used as a Sr source in this study. Sr was added to the culture solution at final concentrations of 0, 0.5, 1.0, 2.0, 5.0, 20.0, and 100 μg/mL. After 72 h of continuous culture, TGF-β1 and TGF-β2 mRNA abundance and protein expression levels in the chondrocytes were determined by real-time polymerase chain reaction (real-time PCR) and Western blot, respectively. The results showed that TGF-β1 and TGF-β2 expressions in chondrocytes increased dose-dependently with Sr concentration. The mRNA abundance of TGF-β1 and TGF-β2 were markedly higher than those observed for control (P < 0.01) when the Sr-treated concentration exceeded 1.0 and 5.0 μg/mL, respectively. The TGF-β1 and TGF-β2 protein expression levels were extremely significantly higher than those in the control group (P < 0.01) at above 5.0 μg/mL Sr-treatment. These results indicated that Sr could involve in the chondrocytes metabolism via regulating TGF-β1 and TGF-β2 signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li TF, O’Keefe RJ, Chen D (2005) TGF-β signaling in chondrocytes. Front Biosci 10(1–3):681–688. https://doi.org/10.2741/1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuhn AR, Das R, Pavanram P, Pufe T, Jahr H (2016) TGF-β superfamily members preserve the chondrocyte phenotype under physioxia in vitro. J Orthop Transl 7(C):109–110. https://doi.org/10.1016/j.jot.2016.06.197

    Article  Google Scholar 

  3. Lafont J, Jacques C, Le Dreau G, Calhabeu F, Thibout H, Dubois C, Berenbaum F, Laurent M, Martinerie C (2005) New target genes for NOV/CCN3 in chondrocytes: TGF-β2 and type X collagen. J Bone Miner Res 20(12):2213–2223. https://doi.org/10.1359/JBMR.050818

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Y, Guo D, Hou S, Zhong H, Yan J, Zhang C, Zhou Y (2013) Porous allograft bone scaffolds: doping with strontium. PLoS One 8(7):e69339. https://doi.org/10.1371/journal.pone.0069339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cabrera WE, Schrooten I, De Broe ME, D'haese PC (1999) Strontium and bone. J Bone Miner Res 14(5):661–668. https://doi.org/10.1359/jbmr.1999.14.5.661

    Article  CAS  PubMed  Google Scholar 

  6. Schrooten I, Cabrera W, Goodman WG, Dauwe S, Lamberts LV, Marynissen R, Dorriné W, De Broe ME, D’Haese PC (1998) Strontium causes osteomalacia in chronic renal failure rats. Kidney Int 54(2):448–456. https://doi.org/10.1046/j.1523-1755.1998.00035.x

    Article  CAS  PubMed  Google Scholar 

  7. Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29(6):981–991. https://doi.org/10.1002/stem.646

    Article  CAS  PubMed  Google Scholar 

  8. Ammann P (2006) Strontium ranelate: a physiological approach for an improved bone quality. Bone 38(2):15–18. https://doi.org/10.1016/j.bone.2005.09.023

    Article  CAS  PubMed  Google Scholar 

  9. Marie P (2006) Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 38(2):10–14. https://doi.org/10.1016/j.bone.2005.07.029

    Article  CAS  Google Scholar 

  10. Marie P (2005) Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int 16(1):S7–S10. https://doi.org/10.1007/s00198-004-1753-8

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Zhu X, Liu L, Shi X, Yin L, Zhang Y, Li X, Wang Z, Liu G (2013) Effects of strontium on collagen content and expression of related genes in rat chondrocytes cultured in vitro. Biol Trace Elem Res 153(1–3):212–219. https://doi.org/10.1007/s12011-013-9640-9

    Article  CAS  PubMed  Google Scholar 

  12. Henrotin Y, Labasse A, Zheng S, Galais P, Tsouderos Y, Crielaard J-M, Reginster J-Y (2001) Strontium ranelate increases cartilage matrix formation. J Bone Miner Res 16(2):299–308. https://doi.org/10.1359/jbmr.2001.16.2.299

    Article  CAS  PubMed  Google Scholar 

  13. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4):389–406. https://doi.org/10.1016/S1534-5807(02)00157-0

    Article  CAS  PubMed  Google Scholar 

  14. Horton WA (2003) Skeletal development: insights from targeting the mouse genome. Lancet 362(9383):560–569. https://doi.org/10.1016/S0140-6736(03)14119-0

    Article  CAS  PubMed  Google Scholar 

  15. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie P (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18(6):517–523. https://doi.org/10.1016/8756-3282(96)00080-4

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi N, Sasaki T, Tsouderos Y, Suda T (2003) S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res 18(6):1082–1087. https://doi.org/10.1359/jbmr.2003.18.6.1082

    Article  CAS  PubMed  Google Scholar 

  17. Morabito N, Catalano A, Gaudio A, Morini E, Bruno LM, Basile G, Tsiantouli E, Bellone F, Agostino RM, Piraino B (2016) Effects of strontium ranelate on bone mass and bone turnover in women with thalassemia major-related osteoporosis. J Bone Miner Metab 34(5):540–546. https://doi.org/10.1007/s00774-015-0689-8

    Article  CAS  PubMed  Google Scholar 

  18. Alexandersen P, Karsdal M, Qvist P, Reginster J-Y, Christiansen C (2007) Strontium ranelate reduces the urinary level of cartilage degradation biomarker CTX-II in postmenopausal women. Bone 40(1):218–222. https://doi.org/10.1016/j.bone.2006.07.028

    Article  CAS  PubMed  Google Scholar 

  19. Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113(6):685–700. https://doi.org/10.1016/S0092-8674(03)00432-X

    Article  CAS  Google Scholar 

  20. Ikushima H, Miyazono K (2012) TGF-β signal transduction spreading to a wider field: a broad variety of mechanisms for context-dependent effects of TGF-β. Cell Tissue Res 347(1):37–49. https://doi.org/10.1007/s00441-011-1179-5

    Article  CAS  PubMed  Google Scholar 

  21. Tang Y, Xiao J, Wang Y, Li M, Shi Z (2017) Effect of adenovirus-mediated TGF-β1 gene transfer on the function of rabbit articular chondrocytes. J Orthop Sci 22(1):149–155. https://doi.org/10.1016/j.jos.2016.05.009

    Article  PubMed  Google Scholar 

  22. Hickery MS, Bayliss MT, Dudhia J, Lewthwaite JC, Edwards JC, Pitsillides AA (2003) Age-related changes in the response of human articular cartilage to IL-1α and transforming growth factor β (TGF-β) chondrocytes exhibit a diminished sensitivity to TGF-β. J Biol Chem 278(52):53063–53071. https://doi.org/10.1074/jbc.M209632200

    Article  CAS  PubMed  Google Scholar 

  23. Worster AA, Nixon AJ, Brower-Toland BD, Williams J (2000) Effect of transforming growth factor β1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res 61(9):1003–1010. https://doi.org/10.2460/ajvr.2000.61.1003

    Article  CAS  PubMed  Google Scholar 

  24. Das R, Timur U, Edip S, Haak E, Wruck C, Weinans H, Jahr H (2015) TGF-β2 is involved in the preservation of the chondrocyte phenotype under hypoxic conditions. Ann Anat 198:1–10. https://doi.org/10.1016/j.aanat.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  25. Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC (2008) The potential of IGF-1 and TGF-β1 for promoting “adult” articular cartilage repair: an in vitro study. Tissue Eng Part A 14(7):1251–1261. https://doi.org/10.1089/ten.tea.2007.0211

    Article  CAS  PubMed  Google Scholar 

  26. Xu R, Li J, Wei B, Huo W, Wang L (2017) MicroRNA-483-5p modulates the expression of cartilage-related genes in human chondrocytes through down-regulating TGF-β1 expression. Tohoku J Exp Med 243(1):41–48. https://doi.org/10.1620/tjem.243.41

    Article  CAS  PubMed  Google Scholar 

  27. Hui W, Rowan AD, Cawston T (2001) Modulation of the expression of matrix metalloproteinase and tissue inhibitors of metalloproteinases by TGF-β1 and IGF-1 in primary human articular and bovine nasal chondrocytes stimulated with TNF-α. Cytokine 16(1):31–35. https://doi.org/10.1006/cyto.2001.0950

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Lou S, Ju X, Xia K, Xia J (2003) In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture: activation by transfection with TGF-β2. Tissue Cell 35(1):69–77. https://doi.org/10.1016/S0040-8166(02)00106-4

    Article  PubMed  Google Scholar 

  29. Van Osch G, van der Veen SW, Verwoerd-Verhoef HL (2001) In vitro redifferentiation of culture-expanded rabbit and human auricular chondrocytes for cartilage reconstruction. Plast Reconstr Surg 107(2):433–440. https://doi.org/10.1097/00006534-200102000-00020

    Article  PubMed  Google Scholar 

  30. Leonard CM, Fuld HM, Frenz DA, Downie SA, Massague J, Newman SA (1991) Role of transforming growth factor β in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-β and evidence for endogenous TGF-β-like activity. Dev Biol 145(1):99–109. https://doi.org/10.1016/0012-1606(91)90216-P

    Article  CAS  PubMed  Google Scholar 

  31. Roark EF, Greer K (1994) Transforming growth factor β and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro. Dev Dynam 200(2):103–116. https://doi.org/10.1002/aja.1002000203

    Article  CAS  Google Scholar 

  32. Sherwood JC, Bertrand J, Eldridge SE, Dell'Accio F (2014) Cellular and molecular mechanisms of cartilage damage and repair. Drug Discov Today 19(8):1172–1177. https://doi.org/10.1016/j.drudis.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  33. Heldin CH, Miyazono K, tenDijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471. https://doi.org/10.1038/37284

    Article  CAS  PubMed  Google Scholar 

  34. Li M, Wang Y, Liao N, Li J, Dong Q (2017) Changes of TGF-β1 expression during orthodontic tooth movement in rats with osteoporosis. Shanghai J Stomatol 26(1):17–20

    Google Scholar 

  35. Huang X, Lv H, Jin S, Guo R, Wu W (2013) Strontium ranelate promotes osteogenic differentiation of rat bone mesenchymal stem cells through TGF-β1/Smad signaling pathway. Chinese J Pathophysiol 29(2):302–307

    CAS  Google Scholar 

Download references

Funding

The project was supported by the National Natural Science Foundation of China (Grant No. 31502129), China Postdoctoral Science Foundation funded project (No. 2014 M560811), and Programs for Science and Technology Shaanxi (No. 2016NY-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wang.

Ethics declarations

The authors alone are responsible for the content and writing of the article. The study was approved by the Institutional Animal Research Committee Guidelines of Northwest A&F University in China.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Guo, Y., Zhang, J. et al. Strontium Promotes Transforming Growth Factors β1 and β2 Expression in Rat Chondrocytes Cultured In Vitro. Biol Trace Elem Res 184, 450–455 (2018). https://doi.org/10.1007/s12011-017-1208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1208-7

Keywords

Navigation