Skip to main content

Advertisement

Log in

An Investigation of Protective Effects of Litium Borate on Blood and Histopathological Parameters in Acute Cadmium-Induced Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was carried out to determine the protective effects of lithium borate (LTB) on blood parameters and histopathological findings in experimentally induced acute cadmium (Cd) toxicity in rats. Twenty-eight male Wistar albino rats were used, weighing 200–220 g, and they were randomly divided into four groups, including one control and the following three experimental groups: a Cd group (0.025 mmol/kg), a LTB group (15 mg/kg/day orally for 5 days), and a LTB + Cd group (15 mg/kg/day orally for 5 days and Cd 0.025 mmol/kg by intraperitoneal injection on the fifth day). All the rats in the study were anesthetized with ketamine at the end of the sixth day, blood was taken from their hearts, and then the rats were decapitated. The values in the control and LTB group were usually close to each other. White blood cell (WBC), neutrophil %, and C-reactive protein (CRP) levels increased in the Cd and LTB + Cd groups while lymphocyte and monocyte levels decreased in a statistically significant manner, in comparison to the other groups. It was determined that the levels of red blood cells (RBCs), hematocrit (Htc), and hemoglobin (Hb) did not change in the groups. The levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the Cd and LTB + Cd groups significantly increased, in comparison to the other groups, while the glucose, alkaline phosphatase (ALP), albumin (ALB), and total protein (TP) levels decreased. According to histopathological findings in the control and LTB groups, the liver and kidney tissues were found to have normal histological structures. In the Cd group, severe necrotic hemorrhagic hepatitis, mild steatosis, and mononuclear cell infiltration were detected in the liver. In the LTB + Cd group, degeneration and mild mononuclear cell infiltration were found in the liver. Regarding the kidney tissue in the Cd group, severe intertubular hyperemia in both kidney cortex and medulla, as well as degeneration and necrosis in the tubulus epithelium, was observed. In the LTB + Cd group, mild interstitial hyperemia and mononuclear cell infiltration was detected. Resultantly, it can be said that LTB at this dose has non-toxic effects and some beneficial effects for liver and kidney damage caused by acute Cd toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kay T, Thomas DG, Brown MW, Cryer A, Shurben D, Solbe JF, Del G, Garvey JS (1986) Cadmium accumulation and protein binding patterns in tissues of rainbow tout, Salmo Gairdneri. Environ Health Perspect 65:133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Thompson J, Bannıgan J (2008) Cadmium: Toxic Effects on the Reproductive System and the Embryo. Reprod Toxicol 25:304–315

    Article  CAS  PubMed  Google Scholar 

  3. Méndez-Armenta M, Rios C (2007) Cadmium Neurotoxicity. Environ Toxicol Pharmacol 23(3):350–358

    Article  PubMed  Google Scholar 

  4. WHO, 1992. Cadmium. Geneva Environmental Health Criteria 134

  5. Cannino G, Ferruggıa E, Luparello C, Rinaldi AM (2009) Cadmium and mitochondria. Mitochondrion 9:377–384

    Article  CAS  PubMed  Google Scholar 

  6. Joe MH, Sun WJ, Seong H, Sang YL, Hyun PS, Ohsuk K, Dong HK (2011) Genome-wide response of Deinococcus radiodurans on cadmium toxicity. Microbiol Biotechnol 21:438–447

    CAS  Google Scholar 

  7. Marcano LBC, Carruyo IM, Montiel XM, Morales CB, Soto PM (2009) Effect of cadmium on cellular viability in two species of microalgae (Scenedesmus sp. and Dunaliella viridis). Biol Trace Elem Res 130(1):86–93

    Article  CAS  PubMed  Google Scholar 

  8. Patra RC, Amıya K, Swarup D (2011) Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int 9:4061

    Google Scholar 

  9. Aydogdu N, Kanter M, Erbas H, Kaymak K (2007) Kadmiyuma Bağlı Karaciger Hasarında Taurin, Melatonin ve Asetilsisteinin Nitrik Oksit, Lipit Peroksidasyonu ve Bazı Antioksidanlar Üzerindeki Etkileri. Erciyes Med J 29(2):89–96

    CAS  Google Scholar 

  10. Simon O, Ribeyre F, Boudou A (2000) Comparative experimental study of cadmium and methylmercury trophic transfers between the asiatic clam Corbicula fluminea and the crayfish Astacus astacus. Arch Environ Contam Toxicol 38:317–326

    Article  CAS  PubMed  Google Scholar 

  11. International Agency for Research on Cancer (1986) Tobacco smoking (IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 38). International Agency for Research on Cancer (IARCPress), Lyon

    Google Scholar 

  12. Baldwin DR, Marshall WJ (1999) Heavy metal poisoning and it’s laboratory Investigation. Ann Clin Biochem 36:267–300

    Article  CAS  PubMed  Google Scholar 

  13. Gökalp O, Özer MK, Koyu A, Çiçek E, Sütçü R, Koçak A, Özdem S, Aktürk O (2005) Ratlarda Kadmiyumun Pankreasa Etkileri. SDÜ Tıp Fak Derg 12(3):27–30

    Google Scholar 

  14. Türkez H, Geyikoglu F, Tatar A, Keles MS, Kaplan I (2012) The effects of some boron compounds against heavy metal toxicity in human blood. Exp Toxicol Pathol 64(1):93–101

    Article  PubMed  Google Scholar 

  15. Çelikezen FÇ, Turkez H, Başak T, İzgi MS (2014) DNA damaging and biochemical effects of potassium tetraborate. EXCLI J 13:446–450

    PubMed  PubMed Central  Google Scholar 

  16. Oto G, Yıldırım S, Dede S, Ozdemir H, Yener Z, Usta A, Taspinar M (2017) Therapeutic potential of boric acid and borax: dietary approaches for cancer prevention. Fresenius Environ Bull 26(3):2260–2268

    Google Scholar 

  17. Naghii MR, Saman S (1996) The effect of boron supplementation on the distribution of boron in selected tissues and on testosterone synthesis in rats. J Nutr Biochem 7:507–512

    Article  CAS  Google Scholar 

  18. Becker K, Müssig-Zufika M, Hoffmann K, Krause C, Meyer E, Nöllke P, Schulz C, Seiwert M (1997) Umwelt-survey 1990/92 band V: Trinkwasser. Deskription der Spurenelementgehalte im Haushaltsund Wasserwerks Trinkwasser der Bevölkerung in der Bundesrepublik Deutschland

  19. Moore JA (1997) Expert scientific committee, an assessment of boric acid and borax using the IEHR evaluative process for assessing human developmental and reproductive toxicity of agents. Reprod Toxicol 11(1):123–160

    Article  CAS  PubMed  Google Scholar 

  20. Rainey CJ, Nyquist LA, Christensen RE, Strong PL, Culver BD (1999) Daily boron intake from the American diet. J Am Diet Assoc 99:335–340

    Article  CAS  PubMed  Google Scholar 

  21. Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, Paneth N, Wirth JJ (2008) Cadmium, lead, and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant. Environ Health Perspect 116:1473–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204(3):274–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (review). Biochimie 88(11):1549–1559

    Article  CAS  PubMed  Google Scholar 

  24. Mourón SA, Golıjow CD, Dulout FN (2001) DNA damage by cadmium and arsenic salts assessed by the single cell gel electrophoresis assay. Mutat Res 498:47–55

    Article  PubMed  Google Scholar 

  25. Sarkar A, Ravindran G, Krishnamurthy V (2013) A brief review on the effect of cadmium toxicity: from cellular to organ level. Int J Biotechnol Res 3(1):17–36

    Google Scholar 

  26. Usuda KKK, Orita Y, Dote T, Iguchi K, Nishiura H, Tominaga M, Tagawa T, Goto E, Shirai Y (1998) Serum and urinary boron levels in rats after single administration of sodium tetraborate. Arch Toxicol 72:468–474

    Article  CAS  PubMed  Google Scholar 

  27. Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231

    Article  CAS  PubMed  Google Scholar 

  28. Barranco WT, Kim DH, Stella SL Jr, Eckhert CD (2008) Boric acid inhibits stored Ca(2+) release in DU-145 prostate cancer cells. Cell Biol Toxicol 25:309–320

    Article  PubMed  Google Scholar 

  29. Türkez H (2008) Effects of boric acid and borax on titanium dioxide genotoxicity. J Appl Toxicol 28:658–664

    Article  PubMed  Google Scholar 

  30. Comba B, Çınar A, Comba A, Gencer YG (2016) Sıçanlarda ACTH uygulamasının böbrek fonksiyon testleri elektrolitler ve hematolojik parametreler üzerine etkileri. Ank Üniv Vet Fak Derg 63:229–233

    Google Scholar 

  31. Comba B, Mis L, Comba A, Çınar A, Tas A (2014) Deneysel Olarak Diabet Oluşturulmuş Ratlarda Yara İyileşmesinde Sildenafil Sitratın Bazı Hematolojik Parametrelere ve Mineral Maddelere Etkisi. Atatürk Üniv Vet Bil Derg 9(3):180–186

    Google Scholar 

  32. Guyton AC, Hall JE (2007) Tıbbi Fizyoloji, 11. Nobel Tıp Kitabevleri, Baskı

    Google Scholar 

  33. Noyan A (2011) Yaşamda ve Hekimlikte Fizyoloji, 10. Palme Yayıncılık, Baskı

    Google Scholar 

  34. O'brien PJ, Smith DEC, Knechtel TJ, Marchak MA, Pruimboom-Brees I, Brees DJ, Spratt DP, Archer FJ, Butler P, Potter AN, Provost JP, Richard J, Snyder PA, Reagan WJ (2006) Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim 40(2):153–171

    Article  PubMed  Google Scholar 

  35. Gencer YG, Çınar A, Comba B (2015) Stresin Ratlarda Bazı Karaciger Enzimleri AST ALT ALP Üzerine Etkilerinin Arastırılması. Atatürk Üniv Vet Bil Derg 10(1):21–26

    Google Scholar 

  36. Mert N (1997) Veteriner Klinik Biyokimya. Uludağ Universitesi Güclendirme Vakfı Yayını, Ceylan Matbaacılık, Bursa

    Google Scholar 

  37. Begic A, Djuric A, Ninkovic M, Stevanovic I, Djurdjevic D, Pavlovic M, Jelic K, Pantelic A, Zebic G, Dejanovic B, Stanojevic I, Vojvodic D, Milosavljevic P, Djukic M, Saso L (2017) Disulfiram moderately restores impaired hepatic redox status of rats subchronically exposed to cadmium. J Enzyme Inhib Med Chem 32(1):478–489

    Article  CAS  PubMed  Google Scholar 

  38. Lebedová J, Bláhová L, Večeřa Z, Mikuška P, Dočekal B, Buchtová M, Míšek I, Dumková J, Hampl A, Hilscherová K (2016) Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice. Environ Sci Pollut Res 23(23):24047–24060

    Article  Google Scholar 

  39. El-Boshy M, Ashshi A, Gaith M, Qusty N, Bokhary T, AlTaweel N, Abdelhady M (2017) Studies on the protective effect of the artichoke (Cynara scolymus) leaf extract against cadmium toxicity-induced oxidative stress, hepatorenal damage, and immunosuppressive and hematological disorders in rats. Environ Sci Pollut Res 24(13):12372–12383

    Article  CAS  Google Scholar 

  40. Zhai Q, Wang G, Zhao J, Liu X, Tian F, Zhang H, Chen W (2013) Protective effects of lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol 79(5):1508–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang M, Wang J, Sun H, Han S, Feng S, Shi L, Meng P, Li J, Huang P, Sun Z (2016) Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals. Int J Nanomedicine 11:2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baker JR, Edwards RJ, Lasker JM, Moore MR, Satarug S (2005) Renal and hepatic accumulation of cadmium and lead in the expression of CYP4F2 and CYP2E1. Toxicol Lett 159(2):182–191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ali Cinar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, S., Celikezen, F.C., Oto, G. et al. An Investigation of Protective Effects of Litium Borate on Blood and Histopathological Parameters in Acute Cadmium-Induced Rats. Biol Trace Elem Res 182, 287–294 (2018). https://doi.org/10.1007/s12011-017-1089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1089-9

Keywords

Navigation