Skip to main content

Advertisement

Log in

Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Burn injuries, the most common and destructive forms of wounds, are generally accompanied with life-threatening infections, inflammation, reduced angiogenesis, inadequate extracellular matrix production, and lack of growth factor stimulation. In the current study, a new antimicrobial carbopol-based hydrogel formulated with boron and pluronic block copolymers was evaluated for its healing activity using in vitro cell culture techniques and an experimental burn model. Cell viability, gene expression, and wound healing assays showed that gel formulation increased wound healing potential. In vitro tube-like structure formation and histopathological examinations revealed that gel not only increased wound closure by fibroblastic cell activity, but also induced vascularization process. Moreover, gel formulation exerted remarkable antimicrobial effects against bacteria, yeast, and fungi. Migration, angiogenesis, and contraction-related protein expressions including collagen, α-smooth muscle actin, transforming growth factor-β1, vimentin, and vascular endothelial growth factor were considerably enhanced in gel-treated groups. Macrophage-specific antigen showed an oscillating expression at the burn wounds, indicating the role of initial macrophage migration to the wound site and reduced inflammation phase. This is the first study indicating that boron containing hydrogel is able to heal burn wounds effectively. The formulation promoted burn wound healing via complex mechanisms including stimulation of cell migration, growth factor expression, inflammatory response, and vascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bayat M, Vasheghani MM, Razavi N, Taheri S, Rakhshan M (2005) Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study. J Photochem Photobiol B 78(2):171–177

    Article  CAS  PubMed  Google Scholar 

  2. Alemdaroğlu C, Değim Z, Çelebi N, Zor F, Öztürk S, Erdoğan D (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32(3):319–327

    Article  PubMed  Google Scholar 

  3. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19(2):403–434

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dalal ND, Lee RC (2008) Treatment of burn injury by cellular repair. J Craniofac Surg 19(4):903–906

    Article  PubMed  Google Scholar 

  5. Lehnhardt M, Jafari HJ, Druecke D, Steinstraesser L, Steinau H, Klatte W, Schwake R, Homann H (2005) A qualitative and quantitative analysis of protein loss in human burn wounds. Burns 31(2):159–167

    Article  CAS  PubMed  Google Scholar 

  6. Fox CL Jr, Lasker SE, Winfield JM, Mersheimer WL (1954) Albumin, potassium, sodium, and chloride redistribution and erythrocyte loss after surgical trauma and extensive burns. Ann Surg 140(4):524–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Atiyeh BS, Hayek SN, Gunn SW (2005) New technologies for burn wound closure and healing-review of the literature. Burns 31(8):944–956

    Article  PubMed  Google Scholar 

  8. Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33(7):627–634

    Article  CAS  PubMed  Google Scholar 

  9. Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L (2007) A comparative study of the cytotoxicity of silver‐based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 15(1):94–104

    Article  PubMed  Google Scholar 

  10. Benderdour M, Van Bui T, Hess K, Dicko A, Belleville F, Dousset B (2000) Effects of boron derivatives on extracellular matrix formation. J Trace Elem Med Biol 14(3):168–173

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen FH, Penland JG (1999) Boron supplementation of peri‐menopausal women affects boron metabolism and indices associated with macromineral metabolism, hormonal status and immune function. J Trace Elem Exp Med 12(3):251–261

    Article  CAS  Google Scholar 

  12. Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB (2008) Histomorphometric study of alveolar bone healing in rats fed a boron‐deficient diet. Anat Rec 291(4):441–447

    Article  CAS  Google Scholar 

  13. Blech M, Martin C, Borrelly J, Hartemann P (1990) Treatment of deep wounds with loss of tissue. Value of a 3 percent boric acid solution. Presse medicale 19(22):1050–1052

    CAS  Google Scholar 

  14. Chebassier N, Ouijja EH, Viegas I, Dreno B (2004) Stimulatory effect of boron and manganese salts on keratinocyte migration. Acta Derm Venereol 84(3):191–194

    Article  CAS  PubMed  Google Scholar 

  15. Doğan A, Yalvaç ME, Şahin F, Kabanov AV, Palotás A, Rizvanov AA (2012) Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomedicine 7:4849–4860

    PubMed Central  PubMed  Google Scholar 

  16. Kabanov AV, Batrakova EV, Sriadibhatla S, Yang Z, Kelly DL, Alakov VY (2005) Polymer genomics: shifting the gene and drug delivery paradigms. J Control Release 101(1):259–271

    Article  CAS  PubMed  Google Scholar 

  17. Sahay G, Gautam V, Luxenhofer R, Kabanov AV (2010) The utilization of pathogen-like cellular trafficking by single chain block copolymer. Biomaterials 31(7):1757–1764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Khalil EA, Afifi FU, Al-Hussaini M (2007) Evaluation of the wound healing effect of some Jordanian traditional medicinal plants formulated in Pluronic F127 using mice (Mus musculus). J Ethnopharmacol 109(1):104–112

    Article  PubMed  Google Scholar 

  19. Choi JS, Yoo HS (2010) Pluronic/chitosan hydrogels containing epidermal growth factor with wound‐adhesive and photo‐crosslinkable properties. J Biomed Mater Res A 95(2):564–573

    Article  PubMed  Google Scholar 

  20. Faulkner DM, Sutton ST, Hesford JD, Faulkner BC, Major DA, Hellewell TB, Laughon MM, Rodeheaver GT, Edlich RF (1997) A new stable pluronic® F68 gel carrier for antibiotics in contaminated wound treatment. Am J Emerg Med 15(1):20–24

    Article  CAS  PubMed  Google Scholar 

  21. Erukova VY, Krylova OO, Antonenko YN, Melik-Nubarov NS (2000) Effect of ethylene oxide and propylene oxide block copolymers on the permeability of bilayer lipid membranes to small solutes including doxorubicin. Biochim Biophys Acta 1468(1):73–86

    Article  CAS  PubMed  Google Scholar 

  22. Murhammer DW, Goochee CF (1990) Sparged animal cell bioreactors: mechanism of cell damage and Pluronic F-68 protection. Biotechnol Prog 6(5):391–397

    Article  CAS  PubMed  Google Scholar 

  23. Kant V, Gopal A, Kumar D, Gopalkrishnan A, Pathak NN, Kurade NP, Tandan SK, Kumar D (2013) Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochemica 116(1):5–13

    Article  PubMed  Google Scholar 

  24. Yuhua S, Ligen L, Jiake C, Tongzhu S (2012) Effect of Poloxamer 188 on deepening of deep second-degree burn wounds in the early stage. Burns 38(1):95–101

    Article  PubMed  Google Scholar 

  25. Nalbandian RM, Henry RL, Balko KW, Adams DV, Neuman NR (1987) Pluronic F‐127 gel preparation as an artificial skin in the treatment of third‐degree burns in pigs. J Biomed Mater Res A 21(9):1135–1148

    Article  CAS  Google Scholar 

  26. Lai C-C, Huang F-M, Yang H-W, Chan Y, Huang M-S, Chou M-Y, Chang Y-C (2001) Antimicrobial activity of four root canal sealers against endodontic pathogens. Clin Oral Investig 5(4):236–239

    Article  CAS  PubMed  Google Scholar 

  27. Kalaycı S, Demirci S, Sahin F (2014) Determination of antimicrobial properties of picaridin and DEET against a broad range of microorganisms. World J Microbiol Biotechnol 30(2):407–411

    Article  PubMed  Google Scholar 

  28. Walter M, Wright KT, Fuller H, MacNeil S, Johnson WEB (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316(7):1271–1281

    Article  CAS  PubMed  Google Scholar 

  29. Tang L, Ma X, Tian Q, Cheng Y, Yao H, Liu Z, Qu X, Han X (2013) Inhibition of angiogenesis and invasion by DMBT is mediated by downregulation of VEGF and MMP-9 through Akt pathway in MDA-MB-231 breast cancer cells. Food Chem Toxicol 56:204–213

    Article  CAS  PubMed  Google Scholar 

  30. Vorauer-Uhl K, Fürnschlief E, Wagner A, Ferko B, Katinger H (2001) Topically applied liposome encapsulated superoxide dismutase reduces postburn wound size and edema formation. Eur J Pharm Sci 14(1):63–67

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Liu X, Chen J, Zacharek A, Cui X, Savant-Bhonsale S, Liu Z, Chopp M (2009) Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. Am J Physiol Cell Physiol 296(3):C535–C543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mohajeri D, Mesgari M, Doustar Y, Nazeri M (2011) Comparison of the effect of normal saline and silver sulfadiazine on healing of skin burn wounds in rats: a histopathological study. Middle East J Sci Res 10(1):08–14

    CAS  Google Scholar 

  33. Poon VK, Burd A (2004) In vitro cytotoxicity of silver: implication for clinical wound care. Burns 30(2):140–147

    Article  PubMed  Google Scholar 

  34. Nzietchueng RM, Dousset B, Franck P, Benderdour M, Nabet P, Hess K (2002) Mechanisms implicated in the effects of boron on wound healing. J Trace Elem Med Biol 16(4):239–244

    Article  CAS  PubMed  Google Scholar 

  35. Doğan A, Demirci S, Çağlayan AB, Kılıç E, Günal MY, Uslu Ü, Cumbul A, Şahin F (2014) Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biol Trace Elem Res 162(1–3):72–79

    PubMed  Google Scholar 

  36. Gümüstekin K, Seven B, Karabulut N, Aktas Ö, Gürsan N, Aslan S, Keles M, Varoglu E, Dane S (2004) Effects of sleep deprivation, nicotine, and selenium on wound healing in rats. Int J Neurosci 114(11):1433–1442

    Article  PubMed  Google Scholar 

  37. Wetzler C, Kämpfer H, Stallmeyer B, Pfeilschifter J, Frank S (2000) Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 115(2):245–253

    Article  CAS  PubMed  Google Scholar 

  38. Sidhu GS, Mani H, Gaddipati JP, Singh AK, Seth P, Banaudha KK, Patnaik GK, Maheshwari RK (1999) Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 7(5):362–374

    Article  CAS  PubMed  Google Scholar 

  39. Lee Y-H, Chang J-J, Chien C-T, Yang M-C, Chien H-F (2012) Antioxidant sol–gel improves cutaneous wound healing in streptozotocin-induced diabetic rats. Exp Diabetes Res 2012:504693. doi:10.1155/2012/504693

    PubMed Central  PubMed  Google Scholar 

  40. Zhu H, Ka B, Murad F (2007) Nitric oxide accelerates the recovery from burn wounds. World J Surg 31:624–631

    Article  PubMed  Google Scholar 

  41. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Yeditepe University and by grants from the Scientific and Technological Research Council of Turkey (TUBITAK, project code: 112 M495). The current formulation has a patent application to the Turkish patent institute with the application number of 2013/04209.

Conflict of Interest

The authors have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikrettin Sahin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

a Schematic diagram of the whole experimental plan. Cell viability analysis of NIH 3T3 cells treated with different concentrations of b NaB (1–500 μg/ml), c F68 (5–20 μg/ml), and d F127 (5-20 μg/ml). e NaB and gel formulation stimulated NIH 3T3 cell migration after 36 h incubation period (objective ×4). f Tube formation of HUVEC cells treated with NaB, F68, and F127 (alone or in combination) after 24 h (objective ×4). Black arrows indicate defined concentrations for NaB (15 μg/ml), F68 (10 μg/ml), and F127 (10 μg/ml).Scale bar, 400 μm. Data represent the mean values ± SD per sample from three separate experiments performed in triplicate. Comparisons were performed by ANOVA (Tukey’s post hoc). * P < 0.05: comparison with control group. Control: growth medium-treated NIH 3T3 cells (for b, c, d, and e sections) or HUVECs (for f section). F68: 10 μg/ml pluronic F68; F127: 10 μg/ml pluronic F127; F68-F127: combination of 10 μg/ml pluronic F68 and F127; NaB: 15 μg/ml sodium pentaborate pentahydrate; Gel: combination of 15 μg/ml NaB, 10 μg/ml pluronic F68 and F127 containing growth medium (GIF 37 kb)

High-resolution image (TIFF 1,721 kb)

Supplementary Figure 2

Immunocytochemical analysis of NIH 3T3 cells treated with different reagents for 24 h. Gel formulation resulted in remarkable increase in Col I and VIM expression levels. On the other hand, α-SMA was weakly expressed in NaB group. DAPI used for nucleus staining. Scale bar, 50 μm. Control: growth medium-treated NIH 3T3 cells. F68: 10 μg/ml pluronic F68; F127: 10 μg/ml pluronic F127; F68-F127: combination of 10 μg/ml pluronic F68 and F127; NaB: 15 μg/ml sodium pentaborate pentahydrate; Gel: combination of 15 μg/ml NaB, 10 μg/ml pluronic F68 and F127 containing growth medium. α-SMA: alpha-smooth muscle actin, Col I: collagen type I, and VIM: vimentin (GIF 60 kb)

High-resolution image (TIFF 6,575 kb)

Supplementary Figure 3

a Macroscopic images of burn wounds at days 3, 7, and 14. b Macroscopic evaluation of deep second-degree burn wound. c Hematoxylin and eosin staining of second-degree burn wound (GIF 48 kb)

High-resolution image (TIFF 761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, S., Doğan, A., Karakuş, E. et al. Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing. Biol Trace Elem Res 168, 169–180 (2015). https://doi.org/10.1007/s12011-015-0338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0338-z

Keywords

Navigation