Skip to main content
Log in

Lead Stress Disrupts the Cytoskeleton Organization and Cell Wall Construction During Picea wilsonii Pollen Germination and Tube Growth

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead is a widespread pollutant and has been reported to inhibit pollen tube development, but the mechanism of toxicity involved remains unclear. Here, we report that lead stress significantly prevented Picea wilsonii pollen germination and tube growth and also dramatically altered the tube morphology in a concentration-dependent manner. Fluorescence labeling with JIM 5 (anti-acidic pectin antibody) and Calcofluor white revealed the lead-induced decline of acidic pectin and cellulose, especially in the subapical region. Decolorized aniline blue staining showed the marked accumulation of callose in the apical and subapical regions of lead-treated tubes. Fluorescence labeling with Alexa Fluor 568 phalloidin and anti-tubulin antibody revealed that the distribution of the cytoskeleton in P. wilsonii pollen grains and tubes were developmentally regulated and that lead disturbed the cytoskeleton organization, especially in the shank of the pollen tubes. Taken together, our experiments revealed a link between the dynamics of cytoskeleton organization and the process of P. wilsonii pollen tube development and also indicated that lead disturbed the cytoskeleton assembly and, consequently, cell wall construction. These findings provide new insights into the mechanism of lead toxicity in the tip growth of pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytorem 10:133–160

    Article  CAS  Google Scholar 

  2. Volkov AG, Ranatunga DRA (2006) Plants as environmental biosensors. Plant Signal Behav 1:105–115

    Article  PubMed  Google Scholar 

  3. Sengar RS, Gautam M, Garg SK, Sengar K, Chaudhary R (2008) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam T 196:73–93

    Article  CAS  Google Scholar 

  4. Winchester JW, Bi M (1984) Fine and coarse aerosol composition in an urban setting: a case study in Beijing, China. Atmos Environ 18:1399–1409

    Article  CAS  Google Scholar 

  5. Chen Z, Ge S, Zhang J (1994) Measurement and analysis for atmospheric aerosol particulates in Beijing. Res Environ Sci 7:1–9

    Google Scholar 

  6. Sun Y, Zhuang G, Zhang W, Wang Y, Zhuang Y (2006) Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing. Atmos Environ 40:2973–2985

    Article  CAS  Google Scholar 

  7. Duzgoren-Aydin NS (2007) Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci Total Environ 385:182–195

    Article  PubMed  CAS  Google Scholar 

  8. Sheng XY, Hu ZH, Lu HF, Wang XH, Baluska F, Samaj J, Lin JX (2006) Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell wall components. Plant Physiol 141:1578–1590

    Article  PubMed  CAS  Google Scholar 

  9. Sheng XY, Dong XL, Zhang SS, Jiang LP, Zhu J, Wang L (2010) Mitochondrial dynamics and its responds to proteasome defection during Picea wilsonii pollen tube development. Cell Biochem Funct 28:420–425

    Article  PubMed  CAS  Google Scholar 

  10. Sheng XY, Dong XL, Zhang SS, Jiang LP, Tan LL, Li X (2011) Unequal distribution of ubiquitinated proteins during Pinus bungeana pollen development. Trees- Struct Funct 25:407–414

    Article  CAS  Google Scholar 

  11. Calzoni GL, Antognoni F, Pari E, Fonti P, Gnes A, Speranza A (2007) Active biomonitoring of heavy metal pollution using Rosa rugosa plants. Environ Pollut 149:239–245

    Article  PubMed  CAS  Google Scholar 

  12. Kalbande DM, Dhadse SN, Chaudhari PR, Wate SR (2008) Biomonitoring of heavy metals by pollen in urban environment. Environ Monit Assess 138:233–238

    Article  PubMed  CAS  Google Scholar 

  13. Xiong ZT, Peng YH (2001) Response of pollen germination and tube growth to cadmium with special reference to low concentration exposure. Ecotox Environ Safe 48:51–55

    Article  CAS  Google Scholar 

  14. Tuna AL, Burun B, Yokas I, Coban E (2002) The effects of heavy metals on pollen germination and pollen tube length in the tobacco plant. Turk J Biol 26:109–113

    CAS  Google Scholar 

  15. Mesejo C, Martinez-Fuentes A, Reig C, Rivas F, Agusti M (2006) The inhibitory effect of CuSO4 on citrus pollen germination and pollen tube growth and its application for the production of seedless fruit. Plant Sci 170:37–43

    Article  CAS  Google Scholar 

  16. Sawidis T (2008) Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum. Protoplasma 233:95–106

    Article  PubMed  CAS  Google Scholar 

  17. Sawidis T, Reiss HD (1995) Effects of heavy metals on pollen tube growth and ultrastructure. Protoplasma 185:113–122

    Article  CAS  Google Scholar 

  18. Zhang WH, Rengel Z, Kuo J, Yan G (1999) Aluminium effects on pollen germination and tube growth of Chamelaucium uncinatum. A comparison with other Ca2+ antagonists. Ann Bot 84:559–564

    Article  CAS  Google Scholar 

  19. Lazzaro MD (1996) The actin microfilament network within elongating pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194:186–194

    Article  CAS  Google Scholar 

  20. Lazzaro MD, Donohue JM, Soodavar FM (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–207

    Article  PubMed  CAS  Google Scholar 

  21. Speranza A, Taddei AR, Gambellini G, Ovidi E, Scoccianti V (2009) The cell wall of kiwifruit pollen tubes is a target for chromium toxicity: alterations to morphology, callose pattern and arabinogalactan protein distribution. Plant Biol 11:179–193

    Article  PubMed  CAS  Google Scholar 

  22. Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    Article  PubMed  CAS  Google Scholar 

  23. Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  PubMed  CAS  Google Scholar 

  24. Wang XH, Teng Y, Wang QL, Li XJ, Sheng XY, Zheng MZ, Samaj J, Baluska F, Lin JX (2006) Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141:1591–1603

    Article  PubMed  CAS  Google Scholar 

  25. Chen T, Teng NJ, Wu XQ, Wang YH, Tang W, Samaj J, Baluska F, Lin JX (2007) Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking. Plant Cell Physiol 48:19–30

    Article  PubMed  CAS  Google Scholar 

  26. Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  PubMed  CAS  Google Scholar 

  27. Munzuroglu O, Gur N (2000) The effects of heavy metals on the pollen germination and pollen tube growth of apples (Malus sylvestris Miller cv. Golden). Turk J Biol 24:677–684

    CAS  Google Scholar 

  28. Gur N, Topdemir A (2005) Effects of heavy metals (Cd, Cu, Pb, Hg) on pollen germination and tube growth of quince (Cydonia oblonga M.) and plum (Prunus domestica L.). Fresen Environ Bull 14:36–39

    Google Scholar 

  29. Gur N, Topdemir A (2008) Effects of some heavy metals on in vitro pollen germination and tube growth of apricot (Armenica vulgaris Lam.) and cherry (Cerasus avium L.). World Appl Sci J 4:195–198

    Google Scholar 

  30. Anderhag P, Hepler PK, Lazzaro MD (2000) Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214:141–157

    Article  Google Scholar 

  31. Justus CD, Anderhag P, Goins JL, Lazzaro MD (2004) Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips. Planta 219:103–109

    Article  PubMed  CAS  Google Scholar 

  32. Roderer G, Doenges KH (1983) Influence of trimethyl lead and inorganic lead on the in vitro assembly of microtubules from mammalian brain. Neurotoxicology 4:171–180

    PubMed  CAS  Google Scholar 

  33. Roderer G (1986) On the toxic effects of tetraethyl lead and its derivatives on the chrysophyte Poterioochromonas malhamensis. 6. Effects on lorica formation, mitosis, and cytokinesis. Environ Res 39:205–231

    Article  PubMed  CAS  Google Scholar 

  34. Roderer G, Reiss HD (1988) Different effects of inorganic and triethyl lead on growth and ultrastructure of lily pollen tubes. Protoplasma 144:101–109

    Article  Google Scholar 

  35. Zimmermann HP, Faulstich H, Hansch GM, Doenges KH, Stournaras C (1988) The interaction of triethyl lead with tubulin and microtubules. Mutat Res-Fund Mol M 201:293–302

    Article  CAS  Google Scholar 

  36. Zimmermann HP, Doenges KH, Roderer G (1985) Interaction of triethyl lead chloride with microtubules in vitro and in mammalian cells. Exp Cell Res 156:140–152

    Article  PubMed  CAS  Google Scholar 

  37. Meindl U, Roderer G (1990) Influence of inorganic and triethyl lead on nuclear migration and ultrastructure of Micrasterias. Ecotox Environ Safe 19:192–203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Grant No. 30700039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyong Sheng.

Additional information

Xianyong Sheng and Shasha Zhang are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, X., Zhang, S., Jiang, L. et al. Lead Stress Disrupts the Cytoskeleton Organization and Cell Wall Construction During Picea wilsonii Pollen Germination and Tube Growth. Biol Trace Elem Res 146, 86–93 (2012). https://doi.org/10.1007/s12011-011-9212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9212-9

Keywords

Navigation