Skip to main content
Log in

Scientific Investigation of Antifouling Activity from Biological Agents and Distribution of Marine Foulers—Coastal Areas of Tamil Nadu

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofouling is the result of a biological process that is the accumulation of micro- and macro-organisms on the surfaces of the ship which causes serious environmental problems. The consequence of biofouling includes modifying the hydrodynamic response, affecting heat exchange, can make structures heavier, accelerate or generating corrosion, biodegradation, increasing the fatigue of certain materials, and blocking mechanical functions. It causes severe problems for the objects in the water such as ships and buoys. Also, its impact on shellfish and other aquaculture was sometimes devastating. The main scope of this study is to review the currently available biocides from biological agents for marine submerged foulants and marine foulers that are present around the coastal areas of Tamil Nadu. Biological anti-fouling methods are preferred than that of the chemical and physical anti-fouling methods as it have some toxic effects on the non targeted marine biodiversity. This study focuses on the marine foulers that are present around the coastal areas of Tamil Nadu which will be helpful for the researchers to discover the suitable anti-foulers from a biological source, which will be very useful to protect the marine ecosystem and marine economy. A total of 182 antifouling compounds from marine biological sources were discovered. The marine microbes, Penicillium sp. and Pseudoalteromonas issachenkonii, were reported to possess EC50. The survey results obtained from this study show that Chennai coastal region has a lot of barnacles, and 8 different species were present in Pondicherry region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the datasets generated or analyzed during this study are included in the manuscript.

References

  1. Andrea, M., Severine, L., Celia, M., Tania, T., Reut, W., Yehuda, B., & Ana, O. (2021). Evaluation of the anti-fouling efficacy of Bacillus licheniformis extracts under environmental and natural conditions. Frontiers in Marine Science, Sec. Marine Biotechnology and Bioproducts, 8, 711108. https://doi.org/10.3389/fmars.2021.711108

    Article  Google Scholar 

  2. Ayyappadasan, G., Deepak Kumar, P., Rubavathi, S., & Uthira, M. (2017). Metabolite profiling and an in-vitro assessment of antimicrobial and antioxidant activities of lichen Ramalina inflata. International Research Journal of Pharmacy, 7(12), 132–138.

    Article  Google Scholar 

  3. Babu, R., Yogamoorthi, A., Sankar, R., & Thanamegam, K. (2012). Distribution of macro fouling community in the coastal region of Pondicherry, India. International Journal of Fisheries and Aquatic Sciences, 1, 147–149.

    Google Scholar 

  4. Berntsson, K. M., & Jonsson, P. R. (2003). Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: A comparison of static panels and boat hulls during the boating season. Biofouling, 19(3), 187–195.

    Article  CAS  PubMed  Google Scholar 

  5. Bressy, C., & Lejars, M. (2014). Marine fouling: An overview. Journal of Ocean Technology, 9, 19–28.

    Google Scholar 

  6. Briand, J. F. (2009). Marine antifouling laboratory bioassays: An overview of their diversity. Biofouling, 25(4), 297–311.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  7. Bryers, J. D., & Characklis, W. C. (1992). Biofilm accumulation & activity: A process analysis approach. Biofilms Science and Technology, NATO ASI Series 223, 221–237. https://doi.org/10.1007/978-94-011-1824-8_21

    Article  Google Scholar 

  8. Callow, M. E., & Callow, J. A. (2002). Marine biofouling : A sticky problem. Biologist, 49, 1–5.

    Google Scholar 

  9. Carteau, D., Vallee-Réhel, K., Linossier, I., Quiniou, F., Davy, R., Compereb, C., Delburyc, M., & Fava, F. (2014). Development of environmentally friendly antifouling paints using biodegradable polymer and lower toxic substances. Progress in Organic Coatings, 77, 485–493.

    Article  CAS  Google Scholar 

  10. Chalmer, P. N. (1982). Settlement patterns of species in a marine fouling community and some mechanisms of succession. Journal of Experimental Marine Biology and Ecology, 58, 73–85. https://doi.org/10.1016/0022-0981(82)90098-3

    Article  Google Scholar 

  11. Chen, L., & Lam, J. (2017). SeaNine 211 as degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions antifouling biocide: A coastal pollutant of emerging concern. Journal of Environmental Sciences, 61, 68–79. https://doi.org/10.1016/j.jes.2017.03.040

    Article  CAS  Google Scholar 

  12. Dahms, H., & Dobretsov, S. (2017). Antifouling compounds from marine macroalgae. Marine Drugs, 15, 1–16. https://doi.org/10.3390/md15090265

    Article  CAS  Google Scholar 

  13. Daniel, K. B., Christopher, M. S., Richard, K. E., Daniel, E. B., Beatriz, O., Jeffrey, R. D., Kenan, P. F., Daniel, R., & Kathryn, J. W. (2014). Growth and development of the barnacle Amphibalanus amphitrite: Time and spatially resolved structure and chemistry of the base plate. Biofouling, 30, 799–812.

    Article  Google Scholar 

  14. Fernandez-Alba, A., Hernando, M., Piedra, L., & Chisti, Y. (2002). Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Analytica Chimica Acta, 456, 303–312. https://doi.org/10.1016/s0003-2670(02)00037-5

    Article  CAS  Google Scholar 

  15. Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18, 1049–1056.

    Article  CAS  Google Scholar 

  16. Gopikrishnan, V., Radhakrishnan, M., Pazhanimurugan, R., Shanmugasundaram, T., & Balagurunathan, R. (2015). Natural products: Potential and less explored source for antifouling compounds. Journal of Chemical and Pharmaceutical Research, 7, 1144–1153.

    CAS  Google Scholar 

  17. Goransson, U., Sjogren, M., Svangard, E., Claeson, P., & Bohlin, L. (2004). Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. Journal of natural products, 67(8), 1287–1290.

    Article  PubMed  Google Scholar 

  18. Guardiola, F. A., Cuesta, A., Meseguer, J., & Esteban, M. A. (2012). Risks of using antifouling biocides in aquaculture. International journal of molecular sciences., 13, 1541–1560. https://doi.org/10.3390/ijms13021541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Idora, M. N., Ferry, M., Nik, W. W., & Jasnizat, S. (2015). Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Progress in Organic Coatings, 81, 125–131.

    Article  Google Scholar 

  20. Jacobson, A., & Willingham, G. (2000). Sea-nine antifoulant: An environmentally acceptable alternative to organotin antifoulants. Science of the Total Environment, 258, 103–110. https://doi.org/10.1016/s0048-9697(00)00511-8

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kawamata, M., Kon, Y. K., & Miki, W. (2006). 5, 6-Dichloro-1-methylgramine, a non-toxic antifoulant derived from a marine natural product. Antifouling Compounds, Marine Molecular Biotechnology (Vol. 42, pp. 125–139). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-30016-3_5

    Chapter  Google Scholar 

  22. Krivorot, M., Kushmaro, A., Oren, Y., & Jack, G. (2011). Factors affecting biofilm formation and biofouling in membrane distillation of seawater. Journal of Membrane Science, 376(1–2), 15–24. https://doi.org/10.1016/j.memsci.2011.01.061

    Article  CAS  Google Scholar 

  23. Lau, S. C. K., Thiyagarajan, V., & Qian, P. Y. (2003). The bioactivity of bacterial isolates in Hong Kong water for the inhibition of barnacle (Balanus amphitrite Darwin) settlement. Journal of Experimental Marine Biology and Ecology, 284, 43–60.

    Article  Google Scholar 

  24. Levert, A., Foulon, V., Fauchon, M., Tapissier, B. N., Banaigs, B., & Hellio, C. (2021). Antifouling activity of meroterpenes isolated from the ascidian Aplidium aff. Densum. Marine Biotechnology, 23, 51–61.

    Article  CAS  PubMed  Google Scholar 

  25. Litaudon, M., & Guyot, M. (1986). Ianthelline, a new derivative of 3, 5- dibromo-tyrosine isolated from the sponge Ianthella-ardis from the Bahamas. Tetrahedron Letters, 27, 4455–4456. https://doi.org/10.1016/s0040-4039(00)84977-1

    Article  CAS  Google Scholar 

  26. Mahadevan, G., & Mahendran, S. (2013). Antifouling activity of the green seaweed Ulva reticulata and its epiphytic bacterial strains against marine biofilm bacteria. International Journal of Advanced Life Sciences, 6, 5.

    Google Scholar 

  27. Martin-Rodrıguez, A. J., Reyes, F., Martin, J., Perez-Yepez, J., Leon-Barrios, M., Couttolene, A., Espinoza, C., Trigos, A., Martin, V. S., Norte, M., & Fernandez, J. J. (2014). Inhibition of bacterial quorum sensing by extracts from aquatic fungi: First report from marine endophytes. Marine Drugs, 12, 5503.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mochida, K., Amano, H., Onduka, T., Kakuno, A., & Fujii, K. (2010). Toxicity of 4, 5-dichloro2-n-octyl-3 2H-isothiazolone Sea-Nine 211 to two marine teleostean fishes. Japanese Journal of Environmental Toxicology, 13, 105–116. https://doi.org/10.11403/jset.13.105

    Article  Google Scholar 

  29. Nicolas, T., Vani, M., Isabelle, L., & Nathalie, B. (2012). Effect of biofilm age on settlement of Mytilus edulis. Biofouling: The Journal of Bioadhesion and Biofilm Research, 28(9), 985–1001.

    Article  Google Scholar 

  30. Okamura, H., Aoyama, I., Liu, D., Maguire, R. J., Pacepavicius, G., & Lau, Y. L. (2000). Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Research, 34, 3523–3530. https://doi.org/10.1016/s0043-1354(00)00095-6

    Article  CAS  Google Scholar 

  31. Plouguerne, E., De Souza, L. M., Sassaki, G. L., Hellio, C., Trepos, R., Da Gama, B. A., & Barreto-Bergter, E. (2020). Glycoglycerolipids from Sargassum vulgare as potential antifouling agents. Frontiers in Marine Science, 7, 116.

    Article  Google Scholar 

  32. Prousis, K. C., Kikionis, S., Ioannou, E., Morgana, S., Faimali, M., Piazza, V., & Roussis, V. (2022). Synthesis and antifouling activity evaluation of analogs of bromosphaerol, a brominated diterpene isolated from the red alga Sphaerococcus coronopifolius. Marine Drugs, 20(1), 7.

    Article  CAS  Google Scholar 

  33. Prasanth, R. M., & Sureshkumar, P. (2020). Species composition and distribution of marine foulers along the southeast coast of Tamil Nadu, India. Proceedings of the International Academy of Ecology and Environmental Sciences, 10(1), 1–7.

    Google Scholar 

  34. Ramesh, R., Nammalwar, P., & Gowri, V. S. (2008). Database on coastal information on Tamil Nadu. Institute for Ocean Management, Anna University Chennai -, 600, 025.

    Google Scholar 

  35. Ranjitha, K., Nancharaiah, Y. V., & Venugopalan, V. P. (2020). Role of bacterial biofilms and their EPS on settlement of barnacle (Amphibalanus reticulatus) larvae. International Biodeterioration & Biodegradation, 150, 104958. https://doi.org/10.1016/j.ibiod.2020.104958

    Article  CAS  Google Scholar 

  36. Rubavathi, S., & Ayyappadasan, G. (2023). Modeling and optimization of antibacterial effect of lichen-associated bacteria, Bacillus subtilis KSRLAB3 strain against marine fouling bacteria, Vibrio alginolyticus. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2457

    Article  Google Scholar 

  37. Rubavathi, S., Ayyappadasan, G., & Venkatraman, V. (2023). Bioprospecting and exploration of the natural antifouling approaches against marine foulers. Journal of Pure and Applied Microbiology, 17. https://doi.org/10.22207/JPAM.17.3.02

  38. Rubavathi, S., Ayyappadasan, G., Bhurniammal, S., Srilekha, R., & Brindha, R. (2022a). Synthesis and characterization of ferrous and copper nanoparticles from e-waste using biological reduction by lichen-associated bacteria and their application in antifouling activity. Applied Biochemistry and Biotechnology, 195(4), 1–14. https://doi.org/10.1007/s12010-022-04293-w

  39. Rubavathi, S., Ayyappadasan, G., & Brindha, R. (2022b). Self-potent anti-microbial and anti-fouling action of silver nanoparticles derived from lichen-associated bacteria. Applied Nanoscience, 12(8), 2397–2408. https://doi.org/10.1007/s13204-022-02501-x

    Article  CAS  Google Scholar 

  40. Rubavathi, S., Ayyappadasan, G., & Saranya, D. (2022c). In vitro enzymatic screening and assessment of the lichen associated bacteria and its evaluation of antifouling studies. Periodica di Mineralogia, 91(3), 188–200. https://doi.org/10.37896/pd91.3/91315

    Article  Google Scholar 

  41. Sameer, P., Malladi, V., & Balaji, M. (2011). Fouling communities of the static substrate in a tropical Indian harbor. Journal of Marine Biological Association of India, 53, 81–88.

    Google Scholar 

  42. Sergey, D., Hairong, X., Ying, X., Lisa, A. L., & Pei-Yuan, Q. (2007). Novel antifoulants: Inhibition of larval attachment by proteases. Marine Biotechnology, 9, 388–397. https://doi.org/10.1007/s10126-007-7091-z

    Article  CAS  Google Scholar 

  43. Sharp, K. H., Sneed, J. M., Ritchie, K. B., Daniel, L. M. C., & Paul, V. J. (2015). Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. Biological Bulletin, 228, 98.

    Article  CAS  PubMed  Google Scholar 

  44. Sjogren, M., Goransson, U., Johnson, A. L., Dahlstrom, M., Andersson, R., Bergman, J, ..., & Bohlin, L. (2004). Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. Journal of Natural Products, 67(3), 368–372.

  45. Smirnova, T. A., Didenko, L. V., Azizbekyan, R. R., & Yulia, M. R. (2010). Structural and functional characteristics of bacterial biofilm. Microbiology, 79(4), 413–423. https://doi.org/10.1134/S0026261710040016

    Article  CAS  Google Scholar 

  46. Smirnova, L. L., Koshkarov, A. A., & Sizova, O. S. (2021). Formation of fouling communities on anthropogenic surfaces in the coastal waters of the Black Sea. Inland Water Biology, 14, 536–545. https://doi.org/10.1134/S1995082921040106

    Article  Google Scholar 

  47. Soares, A. R., Engene, N., Gunasekera, S. P., Sneed, J. M., & Paul, V. J. (2015). Carriebowlinol an antimicrobial tetrahydro-quinolinol from an assemblage of marine cyanobacteria containing a novel taxon. Journal of Natural Products, 78, 534.

    Article  CAS  PubMed  Google Scholar 

  48. Subbaiyan, R., Ganesan, A., & Dhanuskodi, S. (2023). Ecolichenology of Eastern Ghats diversity against climatic fluctuations in Kolli Hills, India. Biodiversitas, 24, 625–635.

    Article  Google Scholar 

  49. Tsukamoto, S., Kato, H., Hirota, H., & Fusetani, N. (1996). Ceratinamides A and B: New antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron, 52(24), 8181–8186. https://doi.org/10.1016/0040-4020(96)00387-0

    Article  CAS  Google Scholar 

  50. Tsunemasa, N., & Okamura, H. (2011). Effects of organotin alternative antifoulants on oyster embryo. Archives of Environmental Contamination and Toxicology, 61(1), 128–134. https://doi.org/10.1007/s00244-010-9598-y

    Article  CAS  PubMed  Google Scholar 

  51. Wang, K. L., Wu, Z. L., Wang, Y., Wang, C. H., & Xu, Y. (2017). Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs, 15(9), 266.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wright, A. D., McCluskey, A., Robertson, M. J., MacGregor, K. A., Gordon, C. P., & Guenther, J. (2011). Anti-malarial, anti-algal, anti-tubercular, anti-bacterial, anti-photosynthetic, and anti-fouling activity of diterpene and diterpene isonitriles from the tropical marine sponge Cymbastela hooperi. Organic & Biomolecular Chemistry, 9(2), 400–407.

    Article  CAS  Google Scholar 

  53. Wynne, J. H., Fulmer, P. A., McCluskey, D. M., Mackey, N. M., & Buchanan, J. P. (2011). Synthesis and development of a multifunctional self decontaminating polyurethane coating. ACS Applied Materials & interfaces, 3, 2005–2011.

    Article  CAS  Google Scholar 

  54. Xu, Y., He, H., Schulz, S., Liu, X., Fusetani, N., & Xiong, H. (2010). Potent antifouling compounds produced by marine Streptomyces. Bioresource Technology, 101, 1331–1336. https://doi.org/10.1016/j.biortech.2009.09.046

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, C. Z., Wei, J., et al. (2016). Latest research progress of marine anticorrosion coatings. Corrosion Science Production Technology, 3.

Download references

Acknowledgements

The authors would like to acknowledge the Management, CEO, Principal and Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode for providing necessary facilities and support. We also acknowledge the support offered by DST, DST FIST No: 368 (SR/FST/College–35/2014) and DBT-STAR College Scheme (BT/HRD/11/09/2018) for their support for the instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayyappadasan Ganesan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbaiyan, R., Ganesan, A. & Dhanuskodi, S. Scientific Investigation of Antifouling Activity from Biological Agents and Distribution of Marine Foulers—Coastal Areas of Tamil Nadu. Appl Biochem Biotechnol 196, 1752–1766 (2024). https://doi.org/10.1007/s12010-023-04600-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04600-z

Keywords

Navigation