Skip to main content
Log in

Real-Time and Online Monitoring of Glucose Contents by Using Molecular Imprinted Polymer-Based IDEs Sensor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A highly sensitive, selective, reversible, and reusable glucose sensor is developed by using molecularly imprinted polymer-based artificial receptors onto interdigital transducer. Sensor receptors were synthesized through bulk imprinting technology by using styrene as monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and AIBN as free radical initiator. Topography of the synthesized receptors was investigated by scanning electron microscopy (SEM). Fabricated sensor showed concentration-dependent linear and reversible response with lower limit of detection of 30 ppb and upper limit of detection ~ 500 ppm. Furthermore, newly fabricated sensor is highly selective towards its analyte of interest in the presence of other competing agents, and the regeneration of sensor response has been assessed with the percentage error of less than 2% under the period of 1 year at room temperature and pressure conditions. The reported sensor may have potential technological applications in the field of medical diagnostics, food, and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vargas, E., Ruiz, M. A., Campuzano, S., Reviejo, A. J., & Pingarrón, J. M. (2016). Noninvasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor. Analytica Chimica Acta, 914, 53–61.

    CAS  PubMed  Google Scholar 

  2. Galant, A. L., Kaufman, R. C., & Wilson, J. D. (2015). Glucose: Detection and analysis. Food Chemistry, 188, 149–160.

    CAS  PubMed  Google Scholar 

  3. Hong, X., Wang, J., & Qiu, S. (2014). Authenticating cherry tomato juices-discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Research International, 60, 173–179.

    CAS  Google Scholar 

  4. Vargas, E., Ruiz, M. A., Campuzano, S., Reviejo, A. J., & Pingarrón, J. M. (2016). Non-invasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor. Analytica Chimica Acta, 914, 53–61.

    CAS  PubMed  Google Scholar 

  5. Shen, W., Sun, J., Seah, J. Y. H., Shi, L., Tang, S., & Lee, H. K. (2018). Needle-based sampling coupled with colorimetric reaction catalyzed by layered double hydroxide peroxidase mimic for rapid detection of the change of d-glucose levels with time in bananas. Analytica Chimica Acta, 1001, 32–39.

    CAS  PubMed  Google Scholar 

  6. Surareungchai, W., Deepunya, W., & Tasakorn, P. (2001). Quadruple-pulsed amperometric detection for simultaneous flow injection determination of glucose and fructose. Analytica Chimica Acta, 448(1–2), 215–220.

    CAS  Google Scholar 

  7. Wu, Y., Wang, Q., Chen, M., Dong, C., Zhang, X., & Wang, S. (2016). An enzyme free potentiometric detection of reducing sugars based on a poly (3-hydroxyphenylboronic acid-co-phenol) molecularly imprinted polymer modified electrode. American Journal of Biomedical Sciences, 8.

  8. Chen, X., Chen, J., Wang, F., Xiang, X., Luo, M., Ji, X., & He, Z. (2012). Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosensors & Bioelectronics, 35(1), 363–368.

    CAS  Google Scholar 

  9. Gao, F., Luo, F., Chen, X., Yao, W., Yin, J., Yao, Z., & Wang, L. (2009). A novel nonenzymatic fluorescent sensor for glucose based on silica nanoparticles doped with europium coordination compound. Talanta, 80(1), 202–206.

    CAS  PubMed  Google Scholar 

  10. Emran, M. Y., Mekawy, M., Akhtar, N., Shenashen, M. A., EL-Sewify, I. M., Faheem, A., & El-Safty, S. A. (2018). Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosens Bioelectrons, 100, 122–131.

    CAS  Google Scholar 

  11. Wahjudi, P. N., Patterson, M. E., Lim, S., Yee, J. K., Mao, C. S., & Lee, W.-N. P. (2010). Measurement of glucose and fructose in clinical samples using gas chromatography/mass spectrometry. Clinical Biochemistry, 43(1-2), 198–207.

    CAS  PubMed  Google Scholar 

  12. Ma, C., Sun, Z., Chen, C., Zhang, L., & Zhu, S. (2014). Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chemistry, 145, 784–788.

    CAS  PubMed  Google Scholar 

  13. Akhtar, N., El-Safty, S. A., Abdelsalam, M. E., Shenashen, M. A., & Kawarada, H. (2016). Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood. Biosens Bioelectrons, 77, 656–665.

    CAS  Google Scholar 

  14. Emran, M. Y., Khalifa, H., Gomaa, H., Shenashen, M. A., Akhtar, N., Mekawy, M., Faheem, A., & El-Safty, S. A. (2017). Hierarchical CN doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Microchimica Acta, 184(11), 4553–4562.

    CAS  Google Scholar 

  15. Liao, S.-H., Lu, S.-Y., Bao, S.-J., Yu, Y.-N., & Wang, M.-Q. (2016). NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation. Analytica Chimica Acta, 905, 72–78.

    CAS  PubMed  Google Scholar 

  16. Cao, X., & Wang, N. (2011). A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst, 136(20), 4241–4246.

    CAS  PubMed  Google Scholar 

  17. Lu, W., Qin, X., Asiri, A. M., Al-Youbi, A. O., & Sun, X. (2013). Ni foam: a novel three dimensional porous sensing platform for sensitive and selective non enzymatic glucose detection. Analyst, 138(2), 417–420.

    CAS  PubMed  Google Scholar 

  18. Choi, T., Kim, S. H., Lee, C. W., Kim, H., Choi, S.-K., Kim, S.-H., Kim, E., Park, J., & Kim, H. (2015). Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high performance non-enzymatic glucose sensing. Biosensors and Bioelectronics, 63, 325–330.

    CAS  PubMed  Google Scholar 

  19. Fischer, C., Fraiwan, A., & Choi, S. (2016). A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring. Biosensors and Bioelectronics, 79, 193–197.

    CAS  PubMed  Google Scholar 

  20. Fathollahzadeh, M., Hosseini, M., Haghighi, B., Kolahdouz, M., & Fathipour, M. (2016). Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection. Analytica Chimica Acta, 924, 99–105.

    CAS  PubMed  Google Scholar 

  21. Li, N., Hao, X., Kang, B. H., Xu, Z., Shi, Y., Li, N. B., & Luo, H. Q. (2016). Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification. Biosensors & Bioelectronics, 77, 525–529.

    CAS  Google Scholar 

  22. Kan, X., Li, C., Zhou, H., Zhu, A., Xing, Z., Zhao, Z., & Xu, G. (2012). Three dimensional ordered macroporous electrochemical sensor for dopamine recognition and detection. American Journal of Biomedical Sciences, 4, 184–193.

    CAS  Google Scholar 

  23. Hu, W., Fu, G., Kong, J., Zhou, S., Scafa, N., & Zhang, X. (2015). Advancement of nucleic acid biosensors based on Morpholino. American Journal of Biomedical Sciences, 7.

  24. Kim, D.-M., Cho, S. J., Cho, C.-H., Kim, K. B., Kim, M.-Y., & Shim, Y.-B. (2016). Disposable allsolid state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide. Biosensors & Bioelectronics, 79, 165–172.

    CAS  Google Scholar 

  25. Miao, F., Lu, X., Tao, B., Li, R., & Chu, P. K. (2016). Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing. Microelectronic Engineering, 149, 153–158.

    CAS  Google Scholar 

  26. Myung, N., Kim, S., Lee, C., Kim, T., Rajeshwar, K. (2016). Facile synthesis of Pt-CuO Socie. 163, 180–184.

  27. Thanh, T. D., Balamurugan, J., Hwang, J. Y., Kim, N. H., & Lee, J. H. (2016). In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing. Carbon, 98, 90–98.

    CAS  Google Scholar 

  28. Shackery, I., Patil, U., Pezeshki, A., Shinde, N. M., Kang, S., Im, S., & Jun, S. C. (2016). Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing. Electrochimica Acta, 191, 954–961.

    CAS  Google Scholar 

  29. Wei, C., Cheng, C., Zhao, J., Wang, Z., Wu, H., Gu, K., Du, W., & Pang, H. (2015). Mesoporous ZnSNiS nanocomposites for nonenzymatic electrochemical glucose sensors. Chemistry Open, 4, 32–38.

    CAS  PubMed  Google Scholar 

  30. Saraf, M., Natarajan, K., & Mobin, S. M. (2016). Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO). Dalton Transactions, 45(13), 5833–5840.

    CAS  PubMed  Google Scholar 

  31. Yang, T., Xu, J., Lu, L., Zhu, X., Gao, Y., Xing, H., Yu, Y., Ding, W., & Liu, Z. (2016). Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection. Journal of Electroanalytical Chemistry, 761, 118–124.

    CAS  Google Scholar 

  32. Syshchyk, O., Skryshevsky, V. A., Soldatkin, O. O., & Soldatkin, A. P. (2015). Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals. Biosensors & Bioelectronics, 66, 89–94.

    CAS  Google Scholar 

  33. Joshi, N., Rawat, K., Solanki, P. R., & Bohidar, H. (2015). Enzyme-free and biocompatible nanocomposite based cholesterol sensor. Biochemical Engineering Journal, 102, 69–73.

    CAS  Google Scholar 

  34. Malitesta, C., Losito, I., & Zambonin, G. P. (1999). Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Analytical Chemistry, 71(7), 13661370.

    Google Scholar 

  35. Farid, M. M., Goudini, L., Piri, F., Zamani, A., & Saadati, F. (2016). Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chemistry, 194, 61–67.

    CAS  PubMed  Google Scholar 

  36. Wu, G., & Zaman, M. H. (2015). Amperometric measurements of ethanol on paper with a glucometer. Talanta, 134, 194–199.

    CAS  PubMed  Google Scholar 

  37. Zhuang, X., Tian, C., Luan, F., Wu, X., & Chen, L. (2016). One-step electrochemical fabrication of a nickel oxide nanoparticle/polyaniline nanowire/graphene oxide hybrid on a glassy carbon electrode for use as a non-enzymatic glucose biosensor. RSC Advances, 6, 9254192546.

    Google Scholar 

  38. Emran, M. Y., Shenashen, M. A., Morita, H., El-Safty, S. A. (2018). 3D-ridge stocked layers of nitrogen-doped mesoporous carbon nanosheets for ultrasensitive monitoring of dopamine released from PC12 cells under K+ stimulation. Advanced Healthcare Materials 1701459.

  39. Kim, D. M., Moon, J. M., Lee, W. C., Yoon, J. H., Choi, C. S., & Shim, Y. B. (2017). A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosensors & Bioelectronics, 91, 276–283.

    CAS  Google Scholar 

  40. Gupta, V. K., Yola, M. L., Özaltın, N., Atar, N., Üstündağ, Z., & Uzun, L. (2013). Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochimica Acta, 112, 37–43.

    CAS  Google Scholar 

  41. Wen, T., Zhu, W., Xue, C., Wu, J., Han, Q., Wang, X., Zhou, X., & Jiang, H. (2014). Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@ polyaniline nanoparticles for clinical detection of creatinine. Biosensors & Bioelectronics, 56, 180–185.

    CAS  Google Scholar 

  42. Zhu, W., Jiang, G., Xu, L., Li, B., Cai, Q., Jiang, H., & Zhou, X. (2015). Facile and controllable onestep fabrication of molecularly imprinted polymer membrane by magnetic field directed selfassembly for electrochemical sensing of glutathione. Analytica Chimica Acta, 886, 37–47.

    CAS  PubMed  Google Scholar 

  43. Carrasco, S., Benito-Peña, E., Navarro-Villoslada, F., Langer, J., Sanz-Ortiz, M. N., Reguera, J., Liz-Marzán, L. M., & Moreno-Bondi, M. C. (2016). Multi-branched gold-mesoporous silica nanoparticles coated with molecularly imprinted polymer for label-free antibiotic SERS analysis. Chemistry of Materials, 28(21), 7947–7954.

    CAS  Google Scholar 

  44. Kupis-Rozmysłowicz, J., Wagner, M., Bobacka, J., Lewenstam, A., & Migdalski, J. (2016). Biomimetic membranes based on molecularly imprinted conducting polymers as a sensing element for determination of taurine. Electrochimica Acta, 188, 537–544.

    Google Scholar 

  45. Uzun, L., & Turner, A. P. (2016). Molecularly-imprinted polymer sensors: realising their potential. Biosensors and Bioelectronics, 76, 131–144.

    CAS  PubMed  Google Scholar 

  46. Zhu, W., Xu, L., Zhu, C., Li, B., Xiao, H., Jiang, H., & Zhou, X. (2016). Magnetically controlled electrochemical sensing membrane based on multifunctional molecularly imprinted polymers for detection of insulin. Electrochimica Acta, 218, 91–100.

    CAS  Google Scholar 

  47. Ghani, N. T. A., El Nashar, R. M., Abdel-Haleem, F. M., Madbouly, A. (2016). Computational Design, Synthesis and application of a new selective molecularly imprinted polymer for electrochemical detection. Electroanalysis.

  48. Cernat, A., Tertiș, M., Fritea, L., & Cristea, C. (2016). Graphene in sensors design. In Advanced 2D Materials (pp. 387-432). Scrivener Publishing and co-published with John Wiley & Sons USA.

  49. Iqbal, N., Mustafa, G., & Lieberzeit, P. A. (2013). Mass sensitive multi-sensor platform for receptor screening and quantification purposes. Journal of the Chinese Advanced Materials Society, 1(3), 200–209.

    CAS  Google Scholar 

  50. Latif, U., Mujahid, A., Afzal, A., Sikorski, R., Lieberzeit, P. A., & Dickert, F. L. (2011). Dual and tetraelectrode QCMs using imprinted polymers as receptors for ions and neutral analytes. Analytical and Bioanalytical Chemistry, 400(8), 2507–2515.

    CAS  PubMed  Google Scholar 

  51. Cheng, Z., Wang, E., & Yang, X. (2001). Capacitive detection of glucose using molecularly imprinted polymers. Biosensors and Bioelectronics, 16(3), 179–185.

    CAS  PubMed  Google Scholar 

  52. Yang, Y., Yi, C., Luo, J., Liu, R., Liu, J., Jiang, J., & Liu, X. (2011). Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: a novel strategy for MIP sensors. Biosensors and Bioelectronics, 26(5), 2607–2612.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Higher Education Commission of Pakistan, School of Materials Science and Engineering, University of Jinan (West Campus) Jinan, China and the Department of Chemistry, Al al-Bayt University Al-Mafraq, Jordan for their support in material testing.

Funding Statement

This work was supported financially by Higher Education Commission Pakistan, International Islamic University, Islamabad, Pakistan and OeAD Austria.

Data Availability Statement

The data used to support the findings of this study are included within the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghulam Mustafa or Usman Latif.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, N., Mustafa, G., Yasinzai, M. et al. Real-Time and Online Monitoring of Glucose Contents by Using Molecular Imprinted Polymer-Based IDEs Sensor. Appl Biochem Biotechnol 189, 1156–1166 (2019). https://doi.org/10.1007/s12010-019-03049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03049-3

Keywords

Navigation