Skip to main content
Log in

Development of an Efficient and Cost-Effective Enzymatic Process for Production of (R)-[3,5-bis(trifluoromethyl)phenyl] Ethanol Using Carbonyl Reductase Derived from Leifsonia sp. S749

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

(R)-[3,5-bis(trifluoromethyl) phenyl] ethanol [(R)-3,5-BTPE] is a crucial chiral intermediate for the synthesis of the NK-1 receptor antagonists aprepitant, rolapitant and fosaprepitant. The carbonyl reductase KR01 from Leifsonia sp. S749, discovered by protein sequence alignment, could convert 3′,5′-bis(trifluoromethyl) acetophenone (3,5-BTAP) into (R)-3,5-BTPE with excellent activity and enantioselectivity. In order to enhance the conversion efficiency at high substrate concentrations, the reaction conditions were optimized by response surface analysis. The results showed that 600 g/L 3,5-BTAP was bioreduced to (R)-3,5-BTPE (> 99.9% enantiomeric excess) by the recombinant Escherichia coli/pET-28a (+)-KR01 whole cells, with a 98.3% conversion and 59 g/L/h productivity under the optimized reaction conditions. In addition, the recombinant E. coli cells could be repeatedly used up to seven times in the reaction mixture containing 90% isopropanol (IPA). This is the highest substrate loading and productivity for the bioreduction of 3,5-BTAP by carbonyl reductase ever reported, and this method represents an efficient and cost-effective process for production of (R)-3,5-BTPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pan, J., Zheng, G. W., Ye, Q., & Xu, J. H. (2014). Optimization and scale-up of a bioreduction process for preparation of ethyl (S)-4-chloro-3-hydroxybutanoate. Organic Process Research and Development, 18(6), 739–743.

    Article  CAS  Google Scholar 

  2. Broussy, S., Cheloha, R. W., & Berkowitz, D. B. (2009). Enantioselective, ketoreductase-based entry into pharmaceutical building blocks: ethanol as tunable nicotinamide reductant. Organic Letters, 11(2), 305–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wada, M., Yoshizumi, A., Furukawa, Y., Kawabata, H., Ueda, M., Takagi, H., & Nakamori, S. (2004). Cloning and overexpression of the Exiguobacterium sp F42 gene encoding a new short chain dehydrogenase, which catalyzes the stereoselective reduction of ethyl 3-oxo-3-(2-thienyl)propanoate to ethyl (S)-3-hydroxy-3-(2-thienyl)propanoate. Bioscience Biotechnology and Biochemistry, 68(7), 1481–1488.

    Article  CAS  Google Scholar 

  4. Hargreaves, R., Ferreira, J. C. A., Hughes, D., Brands, J., Hale, J., Mattson, B., & Mills, S. (2011). Development of aprepitant, the first neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Annals of the New York Academy of Sciences, 1222(1), 40–48.

    Article  CAS  PubMed  Google Scholar 

  5. Gelo-Pujic, M., Guyader, F. L., & Schlama, T. (2006). Microbial and homogenous asymmetric catalysis in the reduction of 1-[3,5-bis(trifluoromethyl)phenyl]ethanone. Tetrahedron: Asymmetry, 17(13), 2000–2005.

    Article  CAS  Google Scholar 

  6. Li, X. M., Jiang, H., Uffman, E. W., Guo, L., Zhang, Y. H., Yang, X., & Birman, V. B. (2012). Kinetic resolution of secondary alcohols using amidine-based catalysts. Journal of Organic Chemistry, 77(4), 1722–1737.

    Article  CAS  PubMed  Google Scholar 

  7. Vankawala, P. J., Kolla, N., Elati, C. R., Sreenivasulu, M., Kumar, K. A., Anjaneyulu, Y., Venkatraman, S., Bhattacharya, A., & Mathad, V. T. (2007). Efficient synthesis of (1R)-[3,5-bis(trifluoromethyl)phenyl] ethanol, a key intermediate for aprepitant, an NK-1 receptor antagonist. Synthetic Communications, 37(19), 3439–3446.

    Article  CAS  Google Scholar 

  8. Xu, L., Huang, Z. H., Sandoval, C. A., Gu, L. Q., & Huang, Z. S. (2014). Asymmetric hydrogenation of 3,5-bistrifluoromethyl acetophenone in pilot scale with industrially viable ru/diphosphine-benzimidazole complexes. Organic Process Research and Development, 18(9), 1137–1141.

    Article  CAS  Google Scholar 

  9. Hodgkinson, R., Jurčík, V., Zanottigerosa, A., Nedden, H. G., Blackaby, A., Clarkson, G. J., et al. (2014). Synthesis and catalytic applications of an extended range of tethered ruthenium(II)/eta(6)-arene/diamine complexes. Organometallics, 33(19), 5517–5524.

    Article  CAS  Google Scholar 

  10. Luca, L. D., Mezzetti, A., Luca, L. D., & Mezzetti, A. (2017). Base-free asymmetric transfer hydrogenation of 1,2-di- and monoketones catalyzed by a (NH)(2)P-2-macrocyclic iron(II) hydridec. Angewandte Chemie International Edition, 56(39), 11949–11953.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, J. F., Long, J., Yang, Y. H., Wu, W. L., Xue, P., Chung, L. W., Dong, X. Q., & Zhang, X. M. (2017). Iridium-catalyzed asymmetric hydrogenation of ketones with accessible and modular ferrocene-based amino-phosphine acid (f-ampha) ligands. Organic Letters, 19(3), 690–693.

    Article  CAS  PubMed  Google Scholar 

  12. Lipshutz, B. H., Lower, A., And, R. J. K., & Noson, K. (2006). Applications of asymmetric hydrosilylations mediated by catalytic (DTBM-SEGPHOS) CuH. Organic Letters, 8(14), 2969–2972.

    Article  CAS  PubMed  Google Scholar 

  13. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485(7397), 185–194.

    Article  CAS  Google Scholar 

  14. Huisman, G. W., Liang, J., & Krebber, A. (2010). Practical chiral alcohol manufacture using ketoreductases. Current Opinion in Chemical Biology, 14(2), 122–129.

    Article  CAS  PubMed  Google Scholar 

  15. Yu, S., Li, H., Lu, Y., & Zheng, G. (2018). A catalyst from Burkholderia cenocepacia for efficient anti-Prelog’s bioreduction of 3,5-bis(trifluoromethyl) acetophenone. Applied Biochemistry and Biotechnology, 184(4), 1319–1331.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, K., Li, K., Deng, J., Zhang, B., Lin, J., & Wei, D. (2016). Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. Microbial Cell Factories, 15(1), 191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, N., Li, J., Sun, J., Huang, J., & Wang, P. (2015). Bioreduction of 3,5-bis(trifluoromethyl)acetophenone using ionic liquid as a co-solvent catalyzed by recombinant Escherichia coli cells. Biochemical Engineering Journal, 101, 119–125.

    Article  CAS  Google Scholar 

  18. Liu, Y., Tang, T. X., Pei, X. Q., Zhang, C., & Wu, Z. L. (2014). Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-prelog reduction of 3,5-bis(trifluoromethyl)acetophenone. Journal of Molecular Catalysis B: Enzymatic, 102(1–8), 1–8.

    CAS  Google Scholar 

  19. Ouyang, Q., Wang, P., Huang, J., Cai, J., & He, J. (2013). Efficient enantioselective synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by Leifsonia xyli CCTCC M 2010241 using isopropanol as co-substrate. Journal of Microbiology and Biotechnology, 23(3), 343–350.

    Article  CAS  PubMed  Google Scholar 

  20. Li, J., Wang, P., He, J. Y., Huang, J., & Tang, J. (2013). Efficient biocatalytic synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: Ethanol and glycerol. Applied Microbiology and Biotechnology, 97(15), 6685–6692.

    Article  CAS  PubMed  Google Scholar 

  21. Gai, P., Tang, C., Liu, J., Liu, Y., Zhang, C., & Wu, Z. (2013). Asymmetric anti-prelog reduction of 3,5-bis(trifluoromethyl)-acetophenone by Microbacterium oxydans C3. Chinese Journal of Applied & Environmental Biology, 19(1), 37–42.

    Article  CAS  Google Scholar 

  22. Kurbanoglu, E. B., Zilbeyaz, K., Taskin, M., & Kurbanoglu, N. I. (2009). Total production of (R)-3,5-bistrifluoromethylphenyl ethanol by asymmetric reduction of 3,5-bis(trifluoromethyl)-acetophenone in the submerged culture of Penicillium expansum isolate. Tetrahedron: Asymmetry, 20(23), 2759–2763.

    Article  CAS  Google Scholar 

  23. Li, H., Moncecchi, J., & Truppo, M. D. (2015). Development of an immobilized ketoreductase for enzymatic (R)-1-(3,5-Bis(trifluoromethyl)phenyl)ethanol production. Organic Process Research and Development, 19(7), 695–700.

    Article  CAS  Google Scholar 

  24. Guo, X., Tang, J. W., Yang, J. T., Ni, G. W., Zhang, F. L., & Chen, S. X. (2017). Development of a practical enzymatic process for preparation of (S)-2-Chloro-1-(3,4-difluorophenyl)ethanol. Organic Process Research and Development, 21(10), 1595–1601.

    Article  CAS  Google Scholar 

  25. Noey, E. L., Tibrewal, N., Jiménezosés, G., Osuna, S., Park, J., Bond, C. M., Cascio, D., Liang, J., Zhang, X., & Huisman, G. W. (2015). Origins of stereoselectivity in evolved ketoreductases. Proceedings of the National Academy of Science, 112(51), E7065–E7072.

    CAS  Google Scholar 

  26. Caspeta, L., Lara, A. R., Perez, N. O., Flores, N., Bolivar, F., & Ramirez, O. T. (2013). Enhancing thermo-induced recombinant protein production in Escherichia coli by temperature oscillations and post-induction nutrient feeding strategies. Journal of Biotechnology, 167(1), 47–55.

    Article  CAS  PubMed  Google Scholar 

  27. Lin, X. S., Wen, Q., Huang, Z. L., Cai, Y. Z., Halling, P. J., & Yang, Z. (2015). Impacts of ionic liquids on enzymatic synthesis of glucose laurate and optimization with superior productivity by response surface methodology. Process Biochemistry, 50(11), 1852–1858.

    Article  CAS  Google Scholar 

  28. Yin, X., You, Q., & Jiang, Z. (2011). Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydrate Polymers, 86(3), 1358–1364.

    Article  CAS  Google Scholar 

Download references

Contributors

Jiawei Tang is the first author. Shaoxin Chen, Fuli Zhang, and Jiawei Tang designed the study and wrote the paper. Jiawei Tang, Tengyun Wei, Guowei Ni, Xiang Guo, and Yuanjie Wu collected and analyzed the data. All authors have read and approved the final manuscript.

Funding

This work was supported by the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (2014ZX09201001-005-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuli Zhang or Shaoxin Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.00 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Wei, T., Ni, G. et al. Development of an Efficient and Cost-Effective Enzymatic Process for Production of (R)-[3,5-bis(trifluoromethyl)phenyl] Ethanol Using Carbonyl Reductase Derived from Leifsonia sp. S749. Appl Biochem Biotechnol 188, 87–100 (2019). https://doi.org/10.1007/s12010-018-2904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2904-2

Keywords

Navigation