Skip to main content
Log in

Correlation Between Size and Activity Enhancement of Recombinantly Assembled Cellulosomes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As multienzyme complexes, cellulosomes hydrolyze cellulosic biomass with high efficiency, which is believed to be attributed to either one or both factors: (1) synergy among the catalytic and substrate-binding entities and (2) the large size of cellulosome complexes. Although the former factor has been extensively documented, the correlation between size and specific activity of cellulosomes is still elusive to date. In this study, primary and secondary scaffoldins with 1, 3, or 5 copies of type I/II cohesin domains were recombinantly synthesized and various cellulosomes carrying 1, 3, 5, 9, 15, or 25 molecules of cellulase mixtures of family 5, 9, and 48 glycoside hydrolases were assembled. In addition, the assembled complex was annexed to cellulose with the aid of a family 3a carbohydrate-binding module (CBM3a). Measuring cellulolytic hydrolysis activities of assembled cellulosomes on crystalline Avicel revealed that higher degree of cellulosome complexity resulted in more efficient cellulose hydrolysis with plateaued synergic effects after the cellulosome size reaches certain degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Menzella, H. G., Reid, R., Carney, J. R., Chandran, S. S., Reisinger, S. J., Patel, K. G., Hopwood, D. A., & Santi, D. V. (2005). Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nature Biotechnology, 23(9), 1171–1176.

    Article  CAS  Google Scholar 

  2. Jenni, S., Leibundgut, M., Boehringer, D., Frick, C., Mikolásek, B., & Ban, N. (2007). Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science, 316(5822), 254–261.

    Article  CAS  Google Scholar 

  3. Pröschel, M., Detsch, R., Boccaccini, A. R., & Sonnewald, U. (2015). Engineering of metabolic pathways by artificial enzyme channels. Frontiers in Bioengineering and Biotechnology, 3, 168.

    Article  Google Scholar 

  4. Agapakis, C. M., Boyle, P. M., & Silver, P. A. (2012). Natural strategies for the spatial optimization of metabolism in synthetic biology. Nature Chemical Biology, 8(6), 527–535.

    Article  CAS  Google Scholar 

  5. Lee, H., DeLoache, W. C., & Dueber, J. E. (2012). Spatial organization of enzymes for metabolic engineering. Metabolic Engineering, 14(3), 242–251.

    Article  CAS  Google Scholar 

  6. Dueber, J. E., Wu, G. C., Malmirchegini, G. R., Moon, T. S., Petzold, C. J., Ullal, A. V., Prather, K. L., & Keasling, J. D. (2009). Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 27(8), 753–739.

    Article  CAS  Google Scholar 

  7. You, C., & Zhang, Y. H. P. (2013). Annexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling. ACS Synthetic Biology, 3(6), 380–386.

    Article  Google Scholar 

  8. Sun, Q., & Chen, W. (2016). HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis. Chemical Communications, 52(40), 6701–6704.

    Article  CAS  Google Scholar 

  9. Doi, R. H., & Kosugi, A. (2004). Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology, 2(7), 541–551.

    Article  CAS  Google Scholar 

  10. Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry, 79(1), 655–681.

    Article  CAS  Google Scholar 

  11. Artzi, L., Bayer, E. A., & Moraïs, S. (2017). Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology, 15(2), 83–95.

    Article  CAS  Google Scholar 

  12. Dror, T. W., Rolider, A., Bayer, E. A., Lamed, R., & Shoham, Y. (2003). Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. Journal of Bacteriology, 185(17), 5109–5116.

    Article  CAS  Google Scholar 

  13. Xu, Q., Gao, W., Ding, S. Y., Kenig, R., Shoham, Y., Bayer, E. A., & Lamed, R. (2003). The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. Journal of Bacteriology, 185(15), 4548–4557.

    Article  CAS  Google Scholar 

  14. Xu, Q., Bayer, E. A., Goldman, M., Kenig, R., Shoham, Y., & Lamed, R. (2004). Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. Journal of Bacteriology, 186(4), 968–977.

    Article  CAS  Google Scholar 

  15. Artzi, L., Dassa, B., Borovok, I., Shamshoum, M., Lamed, R., & Bayer, E. A. (2014). Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnology for Biofuels, 7(1), 100.

    Article  Google Scholar 

  16. Coughlan, M. P., Hon-Nami, K., Hon-Nami, H., Ljungdahl, L. G., Paulin, J. J., & Rigsby, W. E. (1985). The cellulolytic enzyme complex of Clostridium thermocellum is very large. Biochemical and Biophysical Research Communications, 130(2), 904–909.

    Article  CAS  Google Scholar 

  17. Felix, C. R., & Ljungdahl, L. G. (1993). The cellulosome: the exocellular organelle of Clostridium. Annual Review of Microbiology, 47(1), 791–819.

    Article  CAS  Google Scholar 

  18. Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.

    Article  CAS  Google Scholar 

  19. Zverlov, V. V., Klupp, M., Krauss, J., & Schwarz, W. H. (2008). Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. Journal of Bacteriology, 190(12), 4321–4327.

    Article  CAS  Google Scholar 

  20. Fierobe, H. P., Bayer, E. A., Tardif, C., Czjzek, M., Mechaly, A., Bélaıch, A., Lamed, R., Shoham, Y., & Bélaıch, J. P. (2002). Degradation of cellulose substrates by cellulosome chimeras substrate targeting versus proximity of enzyme components. The Journal of Biological Chemistry, 277(51), 49621–49630.

    Article  CAS  Google Scholar 

  21. Murashima, K., Kosugi, A., & Doi, R. H. (2002). Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. Journal of Bacteriology, 184(18), 5088–5095.

    Article  CAS  Google Scholar 

  22. Fierobe, H. P., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., Shoham, Y., Belaich, J. P., & Bayer, E. A. (2001). Design and production of active cellulosome chimeras selective incorporation of dockerin-containing enzymes into defined functional complexes. The Journal of Biological Chemistry, 276(24), 21257–21261.

    Article  CAS  Google Scholar 

  23. Fierobe, H. P., Mingardon, F., Mechaly, A., Be, A., Rincon, M. T., Lamed, R., Tardif, C., Be, J., & Bayer, E. A. (2005). Action of designer cellulosomes on homogeneous versus complex substrates. The Journal of Biological Chemistry, 280(16), 16325–16334.

    Article  CAS  Google Scholar 

  24. Tsai, S. L., Oh, J., Singh, S., Chen, R., & Chen, W. (2009). Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Applied and Environmental Microbiology, 75(19), 6087–6093.

    Article  CAS  Google Scholar 

  25. Krauss, J., Zverlov, V. V., & Schwarz, W. H. (2012). In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Applied and Environmental Microbiology, 78(12), 4301–4307.

    Article  CAS  Google Scholar 

  26. Srikrishnan, S., Chen, W., & Da Silva, N. A. (2013). Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. Biotechnology and Bioengineering, 110(1), 275–285.

    Article  CAS  Google Scholar 

  27. Tsai, S. L., Park, M., & Chen, W. (2013). Size-modulated synergy of cellulase clustering for enhanced cellulose hydrolysis. Biotechnology Journal, 8(2), 257–261.

    Article  CAS  Google Scholar 

  28. Moraïs, S., Barak, Y., Hadar, Y., Wilson, D. B., Shoham, Y., Lamed, R., & Bayer, E. A. (2011). Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. MBio, 2, e00233.

    Article  Google Scholar 

  29. Moraïs, S., Morag, E., Barak, Y., Goldman, D., Hadar, Y., Lamed, R., Shoham, Y., Wilson, D. B., & Bayer, E. A. (2012). Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio, 3, e00508.

    Article  Google Scholar 

  30. Xu, Q., Ding, S. Y., Brunecky, R., Bomble, Y. J., Himmel, M. E., & Baker, J. O. (2013). Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnology for Biofuels, 6(1), 126–129.

    Article  CAS  Google Scholar 

  31. Zhang, X. Z., Sathitsuksanoh, N., & Zhang, Y. H. P. (2010). Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresource Technology, 101(14), 5534–5538.

    Article  CAS  Google Scholar 

  32. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  33. Currie, D. H., Herring, C. D., Guss, A. M., Olson, D. G., Hogsett, D. A., & Lynd, L. R. (2013). Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum. Biotechnology for Biofuels, 6(1), 32.

    Article  CAS  Google Scholar 

  34. Wilson, C. M., Rodriguez, J. M., Johnson, C. M., Martin, S. L., Chu, T. Z., Wolfinger, R. D., Hauser, L. J., Land, M. L., Klingeman, D. M., Syed, M. H., Ragauskas, A. J., Tschaplinski, T. J., Mielenz, J. R., & Brown, S. D. (2013). Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. Biotechnology for Biofuels, 6(1), 179.

    Article  Google Scholar 

  35. Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480.

    Article  Google Scholar 

  36. Liao, H., Zhang, X. Z., Rollin, J. A., & Zhang, Y. H. P. (2011). A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnology Journal, 6(11), 1409–1418.

    Article  CAS  Google Scholar 

  37. Zhang, Y. H. P., & Lynd, L. R. (2005). Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7321–7325.

    Article  CAS  Google Scholar 

  38. Lu, Y., Zhang, Y. H., & Lynd, L. R. (2006). Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16165–16169.

    Article  CAS  Google Scholar 

  39. Raman, B., Pan, C., Hurst, G. B., Rodriguez, J. M., McKeown, C. K., Lankford, P. K., Samatova, N. F., & Mielenz, J. R. (2009). Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One, 4(4), e5271.

    Article  Google Scholar 

  40. Olson, D. G., Tripathi, S. A., Giannone, R. J., Lo, J., Caiazza, N. C., Hogsett, D. A., Hettich, R. L., Guss, A. M., Dubrovsky, G., & Lynd, L. R. (2010). Deletion of the Cel48S cellulase from Clostridium thermocellum. Proceedings of the National Academy of Sciences of the United States of America, 107(41), 17727–17732.

    Article  CAS  Google Scholar 

  41. Kruus, K., Wang, W. K., Ching, J., & Wu, J. H. (1995). Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. Journal of Bacteriology, 177(6), 1641–1644.

    Article  CAS  Google Scholar 

  42. Tolonen, A. C., Chilaka, A. C., & Church, G. M. (2009). Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Molecular Microbiology, 74(6), 1300–1313.

    Article  CAS  Google Scholar 

  43. Zhang, X. Z., Sathitsuksanoh, N., Zhu, Z., & Percival Zhang, Y. H. (2011). One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metabolic Engineering, 13(4), 364–372.

    Article  CAS  Google Scholar 

  44. Wittig, I., Beckhaus, T., Wumaier, Z., Karas, M., & Schägger, H. (2010). Mass estimation of native proteins by blue native electrophoresis principles and practical hints. Molecular & Cellular Proteomics, 9(10), 2149–2161.

    Article  CAS  Google Scholar 

  45. Hirano, K., Kurosaki, M., Nihei, S., Hasegawa, H., Shinoda, S., Haruki, M., & Hirano, N. (2016). Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Scientific Reports, 6(1), 35709.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by National Science Foundation (CBET 1265044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ge.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ge, X. Correlation Between Size and Activity Enhancement of Recombinantly Assembled Cellulosomes. Appl Biochem Biotechnol 186, 937–948 (2018). https://doi.org/10.1007/s12010-018-2786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2786-3

Keywords

Navigation