Skip to main content
Log in

Steered Molecular Dynamics for Investigating the Interactions Between Insulin Receptor Tyrosine Kinase (IRK) and Variants of Protein Tyrosine Phosphatase 1B (PTP1B)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study is to use steered molecular dynamics to investigate the dissociation process between IRK and PTP1Bs for wild type and five mutants (consisting of p.D181E, p.D181A, p.Q262A, p.D181A-Y46F, and p.D181A-Q262A). The gained results are observed not only the unbinding mechanism of IRK-PTP1B complexes came from pulling force profile, number of hydrogen bonds, and interaction energy between IRK and PTP1Bs but also described PTP1B’s point mutations could variably change its binding affinity towards IRK. Additionally, the binding free energy calculated by Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) is also revealed that electrostatic energy and polar solvation energy mainly made up the binding free energy of PTP1B-IRK complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olefsk, J. M. (1993). Insulin resistance and the pathogenesis of non-insulin dependent diabetes mellitus: cellular and molecular mechanisms. Advances in Experimental Medicine and Biology, 334, 129–150.

    Article  Google Scholar 

  2. Wilcox, G. (2005). Insulin and insulin resistance. The Clinical Biochemist Reviews, 26, 19–39.

    Google Scholar 

  3. Kahn, C. R. (1994). Banting lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes, 43, 1066–1084.

    Article  CAS  Google Scholar 

  4. Hubbard, S. R. (2013). The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harbor Perspectives in Biology, 5, a008946.

    Article  Google Scholar 

  5. Kido, Y., Nakae, J., & Accili, D. (2001). Clinical review 125: the insulin receptor and its cellular targets. The Journal of Clinical Endocrinology & Metabolism, 86, 972–979.

    CAS  Google Scholar 

  6. Li, S., Depetris, R. S., Barford, D., Chernoff, J., & Hubbard, S. R. (2005). Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase. Structure, 13, 1643–1651.

    Article  CAS  Google Scholar 

  7. Hubbard, S. R. (1997). Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. The EMBO Journal, 16, 5572–5581.

    Article  CAS  Google Scholar 

  8. Hubbard, S. R., Wei, L., Ellis, L., & Hendrickson, W. A. (1994). Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature, 372, 746–754.

    Article  CAS  Google Scholar 

  9. Tonks, N. K. (2003). PTP1B: from the sidelines to the front lines! FEBS Letters, 546, 140–148.

    Article  CAS  Google Scholar 

  10. Byon, J. C., Kusari, A. B., & Kusari, J. (1998). Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Molecular and Cellular Biochemistry, 182, 101–108.

    Article  CAS  Google Scholar 

  11. Zabolotny, J. M., Haj, F. G., Kim, Y. B., Kim, H. J., Shulman, G. I., Kim, J. K., Neel, B. G., & Kahn, B. B. (2004). Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. Jounal of Biological Chemistry, 279, 24844–24851.

    Article  CAS  Google Scholar 

  12. Ahmad, F., & Goldstein, B. J. (1995). Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism, 44, 1175–1184.

    Article  CAS  Google Scholar 

  13. Dadke, S. S., Li, H. C., Kusari, A. B., Begum, N., & Kusari, J. (2000). Elevated expression and activity of protein-tyrosine phosphatase 1B in skeletal muscle of insulin-resistant type II diabetic Goto-Kakizaki rats. Biochemical Biophysical Research Communications, 274, 583–589.

    Article  CAS  Google Scholar 

  14. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C. C., Ramachandran, C., Gresser, M. J., Tremblay, M. L., & Kennedy, B. P. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283, 1544–1548.

    Article  CAS  Google Scholar 

  15. Wang, X. Y., Bergdahl, K., Heijbel, A., Liljebris, C., & Bleasdale, J. E. (2001). Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors. Molecular and Celluler Endocrinology, 173, 109–120.

    Article  CAS  Google Scholar 

  16. Johnson, T. O., Ermolieff, J., & Jirousek, M. R. (2002). Protein tyrosine phosphatase 1B inhibitors for diabetes. Nature Reviewer Drug Discovery, 1, 696–709.

    Article  CAS  Google Scholar 

  17. Seely, B. L., Staubs, P. A., Reichart, D. R., Berhanu, P., Milarski, K. L., Saltiel, A. R., Kusari, J., & Olefsky, J. M. (1996). Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes, 45, 1379–1385.

    Article  CAS  Google Scholar 

  18. Salmeen, A., Andersen, J. N., Myers, M. P., Tonks, N. K., & Barford, D. (2000). Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Molecular Cell, 6, 1401–1412.

    Article  CAS  Google Scholar 

  19. Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substratetrapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Science of the United State of America, 94, 1680–1685.

    Article  CAS  Google Scholar 

  20. Liu, M., Wang, L., Sun, X., & Zhao, X. (2014). Investigating the impact of Asp181 point mutations on interactions between PTP1B and Phosphotyrosine substrate. Scientific Reports, 4, 5095.

    Article  Google Scholar 

  21. Boubekeur, S., Boute, N., Pagesy, P., Zilberfarb, V., Christeff, N., & Issad, T. (2011). A new highly efficient substrate-trapping mutant of protein tyrosine phosphatase IB (PTP1B) reveals full autoactivation of the insulin receptor precursor. Journal of Biological Chemistry, 286, 19373–19380.

    Article  CAS  Google Scholar 

  22. Xie, L., Zhang, Y.-L., & Zhang, Z.-Y. (2002). Design and characterization of an improved protein tyrosine phosphatase substrate-trapping mutant. Biochemistry, 41, 4032–4039.

    Article  CAS  Google Scholar 

  23. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD-visual molecular dynamics. Molecular Graphics, 14, 33–38.

    Article  CAS  Google Scholar 

  24. Hess, B., Kutzner, C., Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  Google Scholar 

  25. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, L. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.

    Article  CAS  Google Scholar 

  26. Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190.

    Article  CAS  Google Scholar 

  27. van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark, A. E., Scott, W. R. P., & Tironi, I. G. (1996). Biomolecular simulation: the GROMOS96 manual and userguide (pp. 1–1042). Zurich: Vdf Hochschulverlag AG an der ETH Zurich.

    Google Scholar 

  28. Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105, 9954–9960.

    Article  CAS  Google Scholar 

  29. Hockney, R. W., Goel, S. P., & Eastwood, J. W. (1974). Quiet high-resolution computer models of a plasma. Journal of Computational Physics, 14, 148–158.

    Article  Google Scholar 

  30. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.

    Article  CAS  Google Scholar 

  31. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  32. Wang, J., Morin, P., Wang, W., & Kollman, P. A. (2001). Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Journal of the American Chemical Society, 123, 5221–5230.

    Article  CAS  Google Scholar 

  33. Nguyen, H., Nguyen, T., & Le, L. (2016). Computational study of glucose-6-phophate-dehydrogenase deficiencies using molecular dynamics simulation. South Asian Journal of Life Sciences, 4, 32–39.

    Article  Google Scholar 

  34. Nguyen, H., & Le, L. (2015). Steered molecular dynamics approach for promising drugs for influenza A virus targeting channel proteins. European Biophysics Journal, 44, 447–455.

    Article  CAS  Google Scholar 

  35. Nguyen, H., Tran, T., Fukunishi, Y., Higo, J., Nakamura, H., & Le, L. (2015). Computational study of drug binding affinity to influenza A neuraminidase using smooth reaction path generation (SRPG) method. Journal of Chemical Information and Modeling, 55, 1936–1943.

    Article  CAS  Google Scholar 

  36. Sharp, K. A., & Honig, B. (1990). Electrostatic interactions in macromolecules: theory and applications. Annual Review of Biophysics and Biophysical Chemistry, 19, 301–332.

    Article  CAS  Google Scholar 

  37. Shrake, A., & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms-lysozyme and insulin. Journal of Molecular Biology, 79, 351–371.

    Article  CAS  Google Scholar 

  38. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Science of the United State of America, 98, 10037–10041.

    Article  CAS  Google Scholar 

  39. Sitkoff, D., Sharp, K. A., & Honig, B. (1994). Accurate calculation of hydration free energies using macroscopic solvent models. The Journal of Chemical Physics, 97, 1978–1988.

    Article  Google Scholar 

  40. Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24, 647–656.

    Article  Google Scholar 

  41. Li, M. S., & Mai, B. K. (2012). Steered molecular dynamics-a promising tool for drug design. Current Bioinformatics, 7, 342–351.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The computing resources were provided by the Institute for Computational Science and Technology, Ho Chi Minh City, and are gratefully acknowledged. The authors would like to express their gratitude to Mr. Linh Nguyen for valuable advice.

Author information

Authors and Affiliations

Authors

Contributions

Hung Nguyen designed the research, analyzed the data, and wrote the manuscript. Nhat Do and Tuyn Phan and Tri Pham analyzed the data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hung Nguyen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H., Do, N., Phan, T. et al. Steered Molecular Dynamics for Investigating the Interactions Between Insulin Receptor Tyrosine Kinase (IRK) and Variants of Protein Tyrosine Phosphatase 1B (PTP1B). Appl Biochem Biotechnol 184, 401–413 (2018). https://doi.org/10.1007/s12010-017-2549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2549-6

Keywords

Navigation