Skip to main content
Log in

Biodegradation of BTEX Aromatics by a Haloduric Microbial Consortium Enriched from a Sediment of Bohai Sea, China

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study focused on a haloduric BTEX-degrading microbial consortium EC20 enriched from Bohai Sea sediment. EC20 degraded 87% of BTEX at 435 mg L−1 initial concentration (benzene, toluene, ethylbenzene, and xylenes in equal proportions) in the presence of 3.4% NaCl. 16S rRNA gene-based PCR-DGGE profiles revealed that the dominant bacteria in EC20 were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes at the phylum level, and Pseudomonas, Mesorhizobium, Achromobacter, Stenotrophomonas, and Halomonas at the genus level. PCR detection of genes coding the key enzymes which participated in BTEX degradation pathways showed that the enriched consortium EC20 contained TOL pathway and TOD pathway to initiate biodegradation of BTEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Doherty, V. F., & Otitoloju, A. A. (2016). Occurrence and distribution of monocyclic aromatic hydrocarbons (BTEX) and the impact on macrobenthic community structure in Lagos lagoon, Nigeria. Environmental Monitoring and Assessment, 188, 571.

    Article  CAS  Google Scholar 

  2. Morlett-Chávez, J. A., Ascacio-Martínez, J. Á., Rivas-Estilla, A. M., Velázquez-Vadillo, J. F., Haskins, W. E., Barrera-Saldaña, H. A., & Acuña-Askar, K. (2010). Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. Int. Biodeterior. Biodegradation, 64, 581–587.

    Article  Google Scholar 

  3. Alfreider, A., & Vogt, C. (2007). Bacterial diversity and aerobic biodegradation potential in a BTEX-contaminated aquifer. Water, Air, and Soil Pollution, 183, 415–426.

    Article  CAS  Google Scholar 

  4. Keith, L. H., & Telliard, W. A. (1979). Priority pollutants: I. A perspective view. Environmental Science & Technology, 13, 416–423.

    Article  Google Scholar 

  5. Jiang, B., Zhou, Z., Dong, Y., Tao, W., Wang, B., Jiang, J., & Guan, X. (2015). Biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Comamonas sp. JB. Appl. Biochem. Biotech., 176, 1700–1708.

    Article  CAS  Google Scholar 

  6. Shim, H., Shin, E., & Yang, S. (2002). A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. Advances in Environmental Research, 7, 203–216.

    Article  CAS  Google Scholar 

  7. Zhou, Y., Huang, H., & Shen, D. (2016). Multi-substrate biodegradation interaction of 1, 4-dioxane and BTEX mixtures by Acinetobacter baumannii DD1. Biodegradation, 27, 37–46.

    Article  CAS  Google Scholar 

  8. Avanzi, I. R., Gracioso, L. H., Baltazar, M. D. P. G., Karolski, B., Perpetuo, E. A., & Nascimento, C. A. O. (2015). Aerobic biodegradation of gasoline compounds by bacteria isolated from a hydrocarbon-contaminated soil. Environmental Engineering Science, 32, 990–997.

    Article  CAS  Google Scholar 

  9. Mesgari Shadi, A., Yaghmaei, S., Vafaei, F., Khataee, A. R., & Hejazi, M. S. (2015). Degradation of benzene, toluene, and xylene (BTX) from aqueous solution by isolated bacteria from contaminated sites. Research on Chemical Intermediates, 41, 265–275.

    Article  CAS  Google Scholar 

  10. Huang, Y., & Li, L. (2014). Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environment Research, 86, 277–284.

    Article  CAS  Google Scholar 

  11. Li, H., Zhang, Q., Wang, X., Ma, X., Lin, K., Liu, Y., Gu, J., Lu, S., Shi, L., Lu, Q., & Shen, T. (2012). Biodegradation of benzene homologues in contaminated sediment of the East China Sea. Bioresource Technology, 124, 129–136.

    Article  CAS  Google Scholar 

  12. Jin, H. M., Choi, E. J., & Jeon, C. O. (2013). Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresource Technology, 145, 57–64.

    Article  CAS  Google Scholar 

  13. Prenafeta-Boldu, F. X., Ballerstedt, H., Gerritse, J., & Grotenhuis, J. (2004). Bioremediation of BTEX hydrocarbons: effect of soil inoculation with the toluene-growing fungus Cladophialophora sp strain T1. Biodegradation, 15, 59–65.

    Article  CAS  Google Scholar 

  14. Mukherjee, A. K., & Bordoloi, N. K. (2012). Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environmental Science and Pollution Research, 19, 3380–3388.

    Article  CAS  Google Scholar 

  15. Vogel, T. M. (1996). Bioaugmentation as a soil bioremediation approach. Current Opinion in Biotechnology, 7, 311–316.

    Article  CAS  Google Scholar 

  16. Daghio, M., Tatangelo, V., Franzetti, A., Gandolfi, I., Papacchini, M., Careghini, A., Sezenna, E., Saponaro, S., & Bestetti, G. (2015). Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment. Chemosphere, 130, 34–39.

    Article  CAS  Google Scholar 

  17. Wongsa, P., Tanaka, M., Ueno, A., Hasanuzzaman, M., Yumoto, I., & Okuyama, H. (2004). Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Current Microbiology, 49, 415–422.

    Article  CAS  Google Scholar 

  18. Hendrickx, B., Dejonghe, W., Boenne, W., Brennerova, M., Cernik, M., Lederer, T., Bucheli-Witschel, M., Bastiaens, L., Verstraete, W., Top, E. M., Diels, L., & Springael, D. (2005). Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene toluene, ethylbenzene, and xylenes: an in situ mesocosm study. Appl. Environ. Microb., 71, 3815–3825.

    Article  CAS  Google Scholar 

  19. Vandera, E., Samiotaki, M., Parapouli, M., Panayotou, G., & Koukkou, A. I. (2015). Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose. Journal of Proteomics, 113, 73–89.

    Article  CAS  Google Scholar 

  20. Lima-Morales, D., Jauregui, R., Camarinha-Silva, A., Geffers, R., Pieper, D. H., & Vilchez-Vargas, R. (2016). Linking microbial community and catabolic gene structures during the adaptation of three contaminated soils under continuous long-term pollutant stress. Applied and Environmental Microbiology, 82, 2227–2237.

    Article  CAS  Google Scholar 

  21. Hendrickx, B., Junca, H., Vosahlova, J., Lindner, A., Ruegg, I., Bucheli-Witschel, M., Faber, F., Egli, T., Mau, M., Schlomann, M., Brennerova, M., Brenner, V., Pieper, D. H., Top, E. M., Dejonghe, W., Bastiaens, L., & Springael, D. (2006). Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. Journal of Microbiological Methods, 64, 250–265.

    Article  CAS  Google Scholar 

  22. Fu, J., Ai, X., Liu, H., Han, D., Chen, D., & Ma, W. (2005). Determination of trace benzene, toluene, ethylbenzene and xylenes in seabed sediments and seawater by purge and trap gas chromatography. Chinese Journal of Analytical Chemistry, 33, 1753–1756.

    CAS  Google Scholar 

  23. Qin, J., Wang, S. Q., Sun, W. L., Yang, J. J., & Shen, B. (2013). BTEX content of marine surface sediments used as indicators of marine oil and gas. Rock & Mineral Analysis, 32, 785–790.

    CAS  Google Scholar 

  24. Chiu, H. Y., Hong, A., Lin, S. L., Surampalli, R. Y., & Kao, C. M. (2013). Application of natural attenuation for the control of petroleum hydrocarbon plume: mechanisms and effectiveness evaluation. Journal of Hydrology, 505, 126–137.

    Article  CAS  Google Scholar 

  25. Yang, F. L., Yang, J. S., Deng, C. P., Chen, N., Wang, S. Q., Wang, E., & Yuan, H. L. (2015). Bacterial communities and their hydrocarbon bioremediation potential in the Bohai Sea. China. Mar. Ecol. Prog. Ser., 538, 117–130.

    Article  CAS  Google Scholar 

  26. Rasheed, M. A., Patil, D. J., and Dayal, A. M. (2013) In Hydrocarbon in microbial techniques for hydrocarbon exploration 195–210.

  27. Wang, S., Qin, J., Sun, W., Shen, B., Yang, J., & Yan, K. (2012). Determination of benzene series in soil and sediment with combined thermal desorption gas chromatography. Petroleum Geology & Experiment, 34, 94–98.

    CAS  Google Scholar 

  28. Wang, X., Wang, W., Gao, L., & Cui, Z. (2006). Protocols of application of denaturing gradient gel electrophoresis (DGGE) in studies of environmental microorganism. Journal of China Agricultural University, 11, 1–7.

    CAS  Google Scholar 

  29. Sei, A., & Fathepure, B. Z. (2009). Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake. Journal of Applied Microbiology, 107, 2001–2008.

    Article  CAS  Google Scholar 

  30. El-Naas, M. H., Acio, J. A., & El Telib, A. E. (2014). Aerobic biodegradation of BTEX: progresses and prospects. Journal of Environmental Chemical Engineering, 2, 1104–1122.

    Article  CAS  Google Scholar 

  31. Lin, C., Wu, C., Tang, C., & Chang, S. (2012). Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresource Technology, 124, 45–51.

    Article  CAS  Google Scholar 

  32. Chiu, H. Y., Hong, A., Lin, S. L., Surampalli, R. Y., & Kao, C. M. (2013). Application of natural attenuation for the control of petroleum hydrocarbon plume: mechanisms and effectiveness evaluation. Journal of Hydrology, 505, 126–137.

    Article  CAS  Google Scholar 

  33. Jiao, S., Liu, Z., Lin, Y., Yang, J., Chen, W., & Wei, G. (2016). Bacterial communities in oil contaminated soils: biogeography and co-occurrence patterns. Soil Biology and Biochemistry, 98, 64–73.

    Article  CAS  Google Scholar 

  34. Yuan, J., Lai, Q., Sun, F., Zheng, T., & Shao, Z. (2015). The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Frontiers in Microbiology, 6, 853.

    Google Scholar 

  35. Deng, C., Yu, X., Yang, J., Li, B., Sun, W., & Yuan, H. (2016). Universal indicators for oil and gas prospecting based on bacterial communities shaped by light-hydrocarbon microseepage in China. Journal of Microbiology and Biotechnology, 26, 1320–1332.

    Article  Google Scholar 

  36. Wallisch, S., Gril, T., Dong, X., Welzl, G., Bruns, C., Heath, E., Engel, M., Suhadolc, M., & Schloter, M. (2014). Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons. Frontiers in Microbiology, 5, 96.

    Article  Google Scholar 

  37. Dong, C., Bai, X., Sheng, H., Jiao, L., Zhou, H., & Shao, Z. (2015). Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean. Biogeosciences, 12, 2163–2177.

    Article  CAS  Google Scholar 

  38. Hemidouche, S., Favier, L., Sadaoui, Z., & Amrane, A. (2016). Degradation of clofibric acid by a phenol resistant Pseudomonas aeruginosa strain. Journal of Biotechnology, 231S, S71.

    Article  Google Scholar 

  39. Abbasian, F., Lockington, R., Megharaj, M., & Naidu, R. (2016). A review on the genetics of aliphatic and aromatic hydrocarbon degradation. Applied Biochemistry and Biotechnology, 178, 224–250.

    Article  CAS  Google Scholar 

  40. Li, J., de Toledo, R. A., Chung, J., & Shim, H. (2014). Removal of mixture of cis-1,2-dichloroethylene/trichloroe-thylene/benzene, toluene, ethylbenzene, and xylenes from contaminated soil by Pseudomonas plecoglossicida. Journal of Chemical Technology & Biotechnology, 89, 1934–1940.

    Article  CAS  Google Scholar 

  41. Teixeira, H., & Rodríguez-Echeverría, S. (2016). Identification of symbiotic nitrogen-fixing bacteria from three African leguminous trees in Gorongosa National Park. Systematic and Applied Microbiology, 39, 350–358.

    Article  CAS  Google Scholar 

  42. Jiménez, N., Viñas, M., Guiu-Aragonés, C., Bayona, J. M., Albaigés, J., & Solanas, A. M. (2011). Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Appl. Microbiol. Biot., 91, 823–834.

    Article  Google Scholar 

  43. Zhang, S. Y., Wang, Q. F., Wan, R., & Xie, S. G. (2011). Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil. Journal of Zhejiang University-SCIENCE B, 12, 760–768.

    Article  CAS  Google Scholar 

  44. Bacosa, H. P., Suto, K., & Inoue, C. (2012). Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. Int. Biodeterior. Biodegradation, 74, 109–115.

    Article  CAS  Google Scholar 

  45. Berg, G., Roskot, N., & Smalla, K. (1999). Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomas maltophilia. Journal of Clinical Microbiology, 37, 3594–3600.

    CAS  Google Scholar 

  46. Castillo-Carvajal, L. C., Sanz-Martín, J. L., & Barragán-Huerta, B. E. (2014). Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environmental Science and Pollution Research, 21, 9578–9588.

    Article  CAS  Google Scholar 

  47. Dong, C., Bai, X., Sheng, H., Jiao, L., Zhou, H., & Shao, Z. (2014). Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean. Biogeosciences Discussions, 11, 13985–14021.

    Article  Google Scholar 

  48. Gutierrez, T., Biddle, J. F., Teske, A., & Aitken, M. D. (2015). Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Frontiers in Microbiology, 6, 695.

    Google Scholar 

  49. Oie, C. S. I., Albaugh, C. E., & Peyton, B. M. (2007). Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Research, 41, 1235–1242.

    Article  CAS  Google Scholar 

  50. Colombo, M., Dell'Amico, E., Cavalca, L., & Andreoni, V. (2004). Biodegradation of a BTX mixture by Pseudomonas strains: monitoring of two co-cultured strains by polymerase chain reaction of catabolic genes. Annals of Microbiology, 54, 381–392.

    CAS  Google Scholar 

  51. Di Martino, C., López, N. I., & Raiger Iustman, L. J. (2012). Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Int. Biodeterior. Biodegradation, 67, 15–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Natural Science Foundation of China (no. 31270533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Yuan.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Table S1

(DOCX 51 kb)

Table S2

(DOCX 55 kb)

Table S3

(DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Yang, F., Deng, C. et al. Biodegradation of BTEX Aromatics by a Haloduric Microbial Consortium Enriched from a Sediment of Bohai Sea, China. Appl Biochem Biotechnol 183, 893–905 (2017). https://doi.org/10.1007/s12010-017-2471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2471-y

Keywords

Navigation