Skip to main content
Log in

Production of the Antimicrobial Protein Weisselin A by Weissella paramesenteroides DX in Batch Fermentations: the Type of Carbohydrate Used as the C-Source in the Substrate Affects the Association of Production with Growth

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of the type of carbohydrate (glucose, fructose, sucrose or galactose) used as the carbon source in the substrate on weissellin A production by Weissella paramesenteroides DX was evaluated on a solid-state cultivation procedure and conventional batch fermentations. Solid-state cultivation was done on M17-based medium over 3- and 6-h incubation periods. Experimental data showed that glucose supports the highest production levels on a per cell basis. Stirred tank bioreactor fermentations carried out at 50 % dissolved oxygen tension revealed the superiority of glucose over the other carbohydrates. Glucose supports growth-associated production and increased production rates and productivities (1,120 AU/ml). Growth-associated production was maintained with fructose but with lower fermentation rates and productivities. Sucrose cannot support this type of production. Fermentations with sucrose were characterized of lower sugar uptake rates, and lower specific growth and production rates, with bacteriocin titres not exceeding 630 AU/ml, while product formation kinetics were of the intermediate type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Symbols:

Units

AU, Arbitrary units of activity:

AU/ml

CFU, Colony forming units:

CFU/ml

k s, Saturation constant:

q p, Specific production rate:

AU/g/l

r s, Substrate consumption rate :

g/l/h

r x, Growth rate:

g/l/h

r p, Product formation rate:

AU/ml/h

x v, Biomass:

g/l

α,Product formation parameter:

β, Product formation parameter:

μ, Specific growth rate :

h−1

μ max, Maximum specific growth rate:

h−1

References

  1. Papagianni, M. (2003). Biotechnology Advances, 79, 465–499.

    Article  Google Scholar 

  2. Biswas, S. R., Ray, P., Johnson, M. C., & Ray, B. (1991). Applied and Environmental Micriobiology, 57, 1265–1267.

    CAS  Google Scholar 

  3. Jimenez-Diaz, R., Rios-Sanchez, R. M., Desmazeaud, M., Ruiz-Barba, J. L., & Piard, J. C. (1993). Applied and Environmental Micriobiology, 59, 1416–1424.

    CAS  Google Scholar 

  4. Papagianni, M., & Papamichael, E. M. (2011). Bioresource Technology, 102, 6730–6734.

    Article  CAS  Google Scholar 

  5. Wu, C. W., Yin, L. J., & Jiang, S. T. (2004). Journal of Agricultural and Food Chemistry, 52, 1146–1151.

    Article  CAS  Google Scholar 

  6. Cabo, M. L., Murado, M. A., Gonzalez, M. P., & Pastoriza, L. (2001). Enzyme and Microbial Technology, 29, 264–273.

    Article  CAS  Google Scholar 

  7. De Vuyst, L. (1995). Journal of Applied Bacteriology, 78, 28–33.

    Article  CAS  Google Scholar 

  8. Papagianni, M., Avramidis, N., & Filiousis, G. (2007). Enzyme and Microbial Technology, 40, 1557–1563.

    Article  CAS  Google Scholar 

  9. Ray, B. (1992). In B. Ray & M. Daeschel (Eds.), Food biopreservatives of microbial origin (pp. 265–322). New York: CRC Press.

    Google Scholar 

  10. Ray, B., & Miller, K. W. (2000). In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 525–566). Boca Raton: CRC Press.

    Google Scholar 

  11. Desjardins, P., Meghrous, J., & Lacroix, C. (2001). International Dairy Journal, 11, 943–951.

    Article  CAS  Google Scholar 

  12. GenBank. http://www.ncbi.nlm.nih.gov/genbank/. Accessed 2012.

  13. UniProt KB. http://www.ebi.ac.uk/swissprot; http://www.uniprot.org. Accessed 2012.

  14. Fimland, G., Sletten, K., & Nissen-Meyer, J. (2002). Biochemical and Biophysical Research Communications, 295, 826–827.

    Article  CAS  Google Scholar 

  15. Papagianni, M. (2012). Bioprocess and Biosystems Engineering. doi:10.1007/s00449-012-0689-1.

  16. Kandler, O. (1983). Antonie Van Leeuwenhoek, 49, 209–224.

    Article  CAS  Google Scholar 

  17. Chandrapati, S., & O’Sullivan, D. J. (1998). Journal of Biotechnology, 63, 229–233.

    Article  CAS  Google Scholar 

  18. Luedeking, R., & Piret, E. L. (1959). Journal of Biochemistry, Microbiology and Technological Engineering, 1, 393–412.

    Article  CAS  Google Scholar 

  19. Terzaghi, B., & Sandine, W. E. (1975). Applied Microbiology, 29, 807–813.

    CAS  Google Scholar 

  20. Wolf, C. E., & Gibbons, W. R. (1996). Journal of Applied Bacteriology, 80, 453–457.

    Article  CAS  Google Scholar 

  21. Kunst, A., Draeger, B., & Ziegenhom, J. (1986). Methods of Enzymatic Analysis, 6, 178–185.

    Google Scholar 

  22. Sinclair, C. G., & Kristiansen, B. (1987). Fermentation Kinetics and Modelling. New York: Taylor and Francis.

    Google Scholar 

  23. Papagianni, M., Avramidis, N., Filiousis, G., Dasiou, D., & Ambrosiadis, I. (2006). Microbial Cell Factories, 5, 30.

    Article  Google Scholar 

  24. Tramer, J., & Fowler, G. G. (1964). Journal of the Science of Food and Agriculture, 15, 522–528.

    Article  CAS  Google Scholar 

  25. Guerra, N. P., Luisa Rua, M., & Pastrana, L. (2001). International Journal of Food Microbiology, 70, 267–281.

    Article  CAS  Google Scholar 

  26. Neysens, P., Messens, W., Gevers, D., Swings, J., & De Vuyst, L. (2003). Microbiology, 149, 1073–1082.

    Article  CAS  Google Scholar 

  27. Hemme, D., & Foucaud-Scheunemann, C. H. (2004). International Dairy Journal, 14, 467–494.

    Article  Google Scholar 

  28. Benomar, N., Abriouel, H., Lee, H., Cho, G. S., Huch, M., Pulido, R. P., et al. (2011). Journal of Bacteriology, 193, 5868–5869.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Papagianni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papagianni, M., Papamichael, E.M. Production of the Antimicrobial Protein Weisselin A by Weissella paramesenteroides DX in Batch Fermentations: the Type of Carbohydrate Used as the C-Source in the Substrate Affects the Association of Production with Growth. Appl Biochem Biotechnol 168, 1212–1222 (2012). https://doi.org/10.1007/s12010-012-9851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9851-0

Keywords

Navigation