Skip to main content
Log in

Impact of High Pyruvate Concentration on Kinetics of Rabbit Muscle Lactate Dehydrogenase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to evaluate the effectiveness of l-lactate dehydrogenase (LDH) from rabbit muscle as a regenerative catalyst of the biologically important cofactor nicotinamide adenine dinucleotide (NAD), the kinetics over broad concentrations were studied to develop a suitable kinetic rate expression. Despite robust literature describing the intricate complexations, the mammalian rabbit muscle LDH lacks a quantitative kinetic rate expression accounting for simultaneous inhibition parameters, specifically at high pyruvate concentrations. Product inhibition by l-lactate was observed to reduce activity at concentrations greater than 25 mM, while expected substrate inhibition by pyruvate was significant above 4.3 mM concentration. The combined effect of ternary and binary complexes of pyruvate and the coenzymes led to experimental rates as little as a third of expected activity. The convenience of the statistical software package JMP allowed for effective determination of experimental kinetic constants and simplification to a suitable rate expression:

$$ v = \frac{{{V_{max}}\left( {AB} \right)}}{{{K_{ia}}{K_b} + {K_b}A + {K_a}B + AB + \frac{P}{{{K_{I - Lac}}}} + \frac{{{B^2}A}}{{{K_{I - Pyr}}}} + \frac{{{B^2}Q}}{{{K_{I - Pyr - NAD}}}}}} $$

where the last three terms represent the inhibition complex terms for lactate, pyruvate, and pyruvate–NAD, respectively. The corresponding values of K I–Lac, K I–Pyr, and K I–Pyr–NAD for rabbit muscle LDH are 487.33 mM−1 and 29.91 mM and 97.47 mM at 22 °C and pH 7.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novoa, W. B., Winer, A. D., Glaid, A. J., & Schwert, G. W. (1959). The Journal of Biological Chemistry, 234, 1143.

    CAS  Google Scholar 

  2. DiSabato, G. (1968). Biochemical and Biophysical Research Communications, 33, 688.

    Article  CAS  Google Scholar 

  3. Gutfreund, H., Cantwell, R., McMurray, D. H., Criddle, R. S., & Hathaway, G. (1968). The Biochemical Journal, 106, 683.

    CAS  Google Scholar 

  4. Everse, J., Barnett, R. E., Thorne, C. J. R., & Kaplan, N. O. (1971). Archives of Biochemistry and Biophysics, 143, 444.

    Article  CAS  Google Scholar 

  5. Burgner, J. W., II, & Ray, W. J., Jr. (1984). Biochemistry, 23, 3636–3648.

    Article  CAS  Google Scholar 

  6. Wang, C. S. (1977). European Journal of Biochemistry, 78, 569–574.

    Article  CAS  Google Scholar 

  7. Fernandez-Santos, T., Lluis, C., & Bozal, J. (1979). Journal of Molecular Catalysis, 5, 247–262.

    Article  CAS  Google Scholar 

  8. McClendon, S., Zhadin, N., & Callender, R. (2005). Biophysical Journal, 89, 2024–2032.

    Article  CAS  Google Scholar 

  9. Hewitt, C. O., Eszes, C. M., Sessions, R. B., Moreton, K. M., Dafforn, T. R., Takei, J., et al. (1999). Protein Engineering, 12, 491–496.

  10. Bergmeyer, H. U., Bernt, E., & Hess, B. (1974). Lactate dehydrogenase. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis. London: Academic Press New York.

    Google Scholar 

  11. Burgner, J. W., II, Ainslie, G. R., Jr., Cleland, W. W., & Ray, W. J., Jr. (1978). Biochemistry, 17, 1646.

    Article  CAS  Google Scholar 

  12. Alberty, R. A. (1953). Journal of the American Chemical Society, 75, 1928.

    Article  CAS  Google Scholar 

  13. Zewe, V., & Fromm, H. J. (1962). The Journal of Biological Chemistry, 237, 1668.

    CAS  Google Scholar 

  14. Wu, C.-Y., Chen, S.-T., Chiou, S.-H., & Wang, K.-T. (1992). Biochemical and Biophysical Research Communications, 186, 874–880.

    Article  CAS  Google Scholar 

  15. Cleland, W. W. (1967). Annual Review of Biochemistry, 36, 77–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Department of Education GAANN Program Grant P200A060184 provided fellowship support for Matthew Eggert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Chambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggert, M.W., Byrne, M.E. & Chambers, R.P. Impact of High Pyruvate Concentration on Kinetics of Rabbit Muscle Lactate Dehydrogenase. Appl Biochem Biotechnol 165, 676–686 (2011). https://doi.org/10.1007/s12010-011-9287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9287-y

Keywords

Navigation