Skip to main content

Advertisement

Log in

Sonochemically sol–gel derived coating of textiles using heterojunction SnO2/ZnO/chitosan bionanocomposites: in vitro antibacterial evaluation

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The cellulose-based textiles currently used in hospitals are good conducive materials for cross-infection or transmission of diseases caused by microorganisms. Thus, great interest has been recently found in the antibacterial finishing of fabrics for practical applications to prevent the infection incidence. In this work, we developed novel SnO2/ZnO/chitosan bionanocomposites by one-step simultaneous sonochemical/sol–gel deposition to prepare an antibacterial textile as a model for combating bacterial infections. The different prepared samples were characterized using transmission electron microscope, X-ray diffraction, and scanning electron microscopy (SEM) indicating the embedded SnO2 and ZnO nanoparticles in treated fabrics. The treated fabrics were used to evaluate antibacterial activities against Escherichia coli and Streptococcus aureus as a model for Gram-negative and Gram-positive bacteria, respectively, using disk diffusion method in dark conditions as an in vitro model for treatment of bacterial wound infection. The procedure was more developed in terms of SnO2/ZnO molar ratio and using chitosan and citric acid to improve the antibacterial properties of the fabrics and their wash durability, respectively. The highest antibacterial activity of the fabrics was attained in a 50 min sonochemical coating process using SnO2/ZnO 1:2 molar ratio in initial sol and simultaneously deposited chitosan and citric acid. The presence of chitosan as complexing agent, citric acid as crosslink agent, and SnO2–ZnO heterojunction as important influencing parameters synergistically enhanced both the antimicrobial efficiency and maintenance of modified cotton durability after performing several washing cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fijan, S, TurkInt, SŠ, “Hospital Textiles, Are They a Possible Vehicle for Healthcare-Associated Infections?” J. Environ. Res. Public. Health., 9 3330–3343 (2012)

    Article  Google Scholar 

  2. Hota, B, “Contamination, Disinfection, Cross-colonization: Are Hospital Surfaces Reservoirs for Nosocomial Infection?” Clin. Infect. Dis., 39 1182–1189 (2004)

    Article  Google Scholar 

  3. Nguyen QV. Hospital-acquired infections. 2006, http://www.emedicine.com/ped/topic1691.htm.

  4. Hospital-acquired infections-trends across Europe., Frost Sullivan.,/http://www.reportlinker.com/p0249335-summary/Hospital-acquired-infections-trends-across-Europe.htmlS. June 2010, Accessed 01 Nov 2012.

  5. Bidet, P, Metais, A, Mahjoub-Messai, F, et al., “Detection Identification by PCR of a Highly Virulent Phylogenetic Subgroup Among Extraintestinal Pathogenic Escherichia coli B2 Strains.” Appl. Environ. Microbiol., 73 2373–2377 (2007)

    Article  Google Scholar 

  6. Stoimenov, P, Klinger, R, Marchin, G, et al., “Metal Oxide Nanoparticles as Bactericidal Agents.” Langmuir, 18 6679–6686 (2002)

    Article  Google Scholar 

  7. El Shafei, A, Abou-Okeil, A, “ZnO/Carboxymethyl Chitosan Bionano-Composite to Impart Antibacterial UV Protection for Cotton Fabric.” Carbohyd. Polym., 83 920–925 (2011)

    Article  Google Scholar 

  8. Ashraf, M, Champagne, P, Perwuelz, A, et al., “Photocatalytic Solution Discoloration and Self-Cleaning by Polyester Fabric Functionalized with ZnO Nanorods.” J. Ind. Text., 19 (6) 34–41 (2014)

    Google Scholar 

  9. Ostrovsky, S, Kazimirsky, G, Gedanken, A, et al., “Selective Cytotoxic Effect of ZnO Nanoparticles on Glioma Cells.” Nano. Res., 2 882–890 (2009)

    Article  Google Scholar 

  10. Poulios, I, Makri, D, Prohaska, X, “Photocatalytic Treatment of Olive Milling Wastewater, Oxidation of Protocatechuic Acid.” Global NEST, 1 55–62 (1999)

    Google Scholar 

  11. Carraway, ER, Hoffman, AJ, Hoffmann, MR, “Photocatalytic Production of H2O2 Organic Acids on Quantum-Sized Semi-conductor Colloids.” Environ. Sci. Technol., 28 786–793 (1994)

    Article  Google Scholar 

  12. Talebian, N, Amininezhad, SM, Doudi, M, “Controllable Synthesis of ZnO Nanoparticles Their Morphology-Dependent Antibacterial Optical Properties.” Photochem. Photobiol. B Biol., 120 66–73 (2013)

    Article  Google Scholar 

  13. Niinomi, M, “Recent Metallic Materials for Biomedical Applications.” Metall. Mater. Trans. A., 33 477–486 (2002)

    Article  Google Scholar 

  14. Cremasco, A, Messias, AD, Esposito, AR, et al., “Effects of Alloying Elements on the Cytotoxic Response of Titanium Alloys.” Mater. Sci. Eng. C., 31 833–839 (2011)

    Article  Google Scholar 

  15. Mei, S, Zhao, L, Wang, W, et al., “Biomimetic Titanium Alloy with Sparsely Distributed Nanotubes Could Enhance Osteoblast Functions.” Adv. Eng. Mater., 14 B166–B174 (2012)

    Article  Google Scholar 

  16. Acevedo-Morantes, CY, Irizarry-Ortiz, RA, Caceres-Valencia, PG, et al., “Combinatorial Growth of Oxide Nanoscaffolds and Its Influence in Osteoblast Cell Adhesion.” J. Appl. Phys., 111 102810-1 (2012)

    Article  Google Scholar 

  17. Vidhu, VK, Philip, D, “Phytosynthesis and Applications of Bioactive SnO2 Nanoparticles.” Mater. Charact., 101 97–105 (2015)

    Article  Google Scholar 

  18. Vidhu, VK, Philip, D, “Biogenic Synthesis of SnO2 Nanoparticles, Evaluation of Antibacterial and Antioxidant Activities.” Spectrochim. Acta. Part A, 134 372–379 (2015)

    Article  Google Scholar 

  19. Peller, J, Wiest, O, Kamat, PV, “Synergy of Combining Sonolysis and Photocatalysis in the Degradation and Mineralization of Chlorinated Aromatic Compounds.” Environ. Sci. Technol.

  20. Meena Kumari, M, Philip, D, “Synthesis of Biogenic SnO2 Nanoparticles and Evaluation of Thermal, Rheological, Antibacterial and Antioxidant Activities.” Powder Tech., 270 312–319 (2015)

    Article  Google Scholar 

  21. Kongsong, P, Sikong, L, Niyomwas, S, et al., “Photocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-Doped SnO2/TiO2.” Sci. World J., 2014 869706 (2014)

    Article  Google Scholar 

  22. Talebian, N, Nilforoushan, MR, Badri Zargar, E, “Enhanced Antibacterial Performance of Hybrid Semiconductor Nanomaterials, ZnO/SnO2 Nanocomposite Thin Films.” Appl. Surf. Sci., 258 (1) 547–555 (2011)

    Article  Google Scholar 

  23. Talebian, N, Sadeghi Haddad Zavvare, H, “Enhanced Bactericidal Action of SnO2 Nanostructures Having Different Morphologies Under Visible Light, Influence of Surfactant.” J. Photochem. Photobiol. B Biol., 130 132–139 (2014)

    Article  Google Scholar 

  24. Phukan, A, Bhattacharjee, RP, Kumar Dutta, D, Stabilization of SnO 2 Nanoparticles into the Nanopores of Modified Montmorillonite and Their Antibacterial Activity. Adv. Powder Tech., Available Online (2016)

    Google Scholar 

  25. Fakhri, A, Behrouz, S, Pourm, M, “Synthesis, Photocatalytic and Antimicrobial Properties of SnO2, SnS2 SnO2/SnS2 Nanostructure.” J. Photochem. Photobiol. B Biol., 149 45–50 (2015)

    Article  Google Scholar 

  26. Nasir, Z, Shakir, M, Wahab, R, et al., “Co-precipitation Synthesis and Characterization of Co Doped SnO2 NPs, HSA Interaction Via Various Spectroscopic Techniques and Their Antimicrobial and Photocatalytic Activities.” Int. J. Biol. Macromol. Part A, 94 554–565 (2017)

    Article  Google Scholar 

  27. Chávez-Calderón, A, Paraguay-Delgado, F, Orrantia-Borunda, E, et al., “Size Effect of SnO2 Nanoparticles on Bacteria Toxicity Their Membrane Damage.” Chemosphere, 165 33–40 (2016)

    Article  Google Scholar 

  28. Tammina, SK, Mandal, BK, Ranjan, S, et al., “Cytotoxicity Study of Piper Nigrum Seed Mediated Synthesized SnO2 Nanoparticles Towards Colorectal (HCT116) and Lung Cancer (A549) Cell Lines.” J. Photochem. Photobiol. B Biol., 166 158–168 (2017)

    Article  Google Scholar 

  29. Fakhri, A, Naji, M, Afshar Nejad, P, “Adsorption and Photocatalysis Efficiency of Magnetite Quantum Dots Anchored Tin Dioxide Nanofibers for Removal of Mutagenic Compound: Toxicity Evaluation and Antibacterial Activity.” J. Photochem. Photobiol. B Biol., 173 204–209 (2017)

    Article  Google Scholar 

  30. Roopan, SM, Kumar, SHS, Madhumitha, G, et al., “Biogenic-Production of SnO2 Nanoparticles and Its Cytotoxic Effect Against Hepatocellular Carcinoma Cell Line (HepG2).” Appl. Biochem. Biotechnol., 175 1567–1575 (2015)

    Article  Google Scholar 

  31. Mohana Roopan, S, Hari Subbish Kumar, S, Madhumitha, G, et al., “Biogenic-Production of SnO2 Nanoparticles and Its Cytotoxic Effect Against Hepatocellular Carcinoma Cell Line (HepG2).” Appl. Biochem. Biotechnol., 175 1567–1575 (2015)

    Article  Google Scholar 

  32. http://www.who.int/pcs/, World Health Organization, International Programme on Chemical Safety, 1211 Geneva 27 (2005) and references therein.

  33. Westrum, B, Thomassen, Y, “The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Standards: 130. Tin and Inorganic Tin Compounds.” Arbete och Hälsa, 10 1–48 (2002), and references therein

    Google Scholar 

  34. Drader, M, Ara, P, Ruiz-Hitzky, E, “Bionanocomposites, A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials.” Adv. Mater., 19 1309–1316 (2007)

    Article  Google Scholar 

  35. Mangiacapra, P, Gorrasi, G, Sorrentino, A, et al., “Biodegradable Nanocomposites Obtained by Ball Milling of Pectin and Montmorillonites.” Carbohyd. Polym., 64 516–523 (2006)

    Article  Google Scholar 

  36. Jayakumar, R, Prabaharan, M, Sudheesh Kumar, PT, et al., “Biomaterials Based on Chitin/Chitosan in Wound Dressing Applications.” Biotechnol. Adv., 29 322–337 (2011)

    Article  Google Scholar 

  37. Lim, S-H, Hudson, SM, “Synthesis Antimicrobial Activity of Water Soluble Chitosan Derivative with a Fibre-Reactive Group.” Carbohydr. Res., 339 313–319 (2004)

    Article  Google Scholar 

  38. Sford, P, Skjak-Braek, G, Anthonsen, T, et al. (eds.), Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Application, pp. 51–69. Elsevier Applied Science, London/New York (1989)

    Google Scholar 

  39. Petkova, P, Francesko, A, Fernes, MM, et al., “Sonochemical Coating of Textiles with Hybrid ZnO/Chitosan Antimicrobial Nanoparticles.” Appl. Mater. Interfaces, 6 1164–1172 (2014)

    Article  Google Scholar 

  40. Kong, M, Chen, XG, Liu, CS, et al., “Antibacterial Mechanism of Chitosan Microspheres in a Solid Dispersing System Against E. coli.” Colloid Surf. B, 65 197–202 (2008)

    Article  Google Scholar 

  41. Wang, X, Du, Y, Liu, H, “Preparation, Characterization and Antimicrobial Activity of Chitosan–Zn Complex.” Carbohyd. Polym., 56 21–26 (2004)

    Article  Google Scholar 

  42. Rajendran, K, Sivalingam, T, “Industrial Method of Cotton Fabric Finishing with Chitosan–ZnO Composite for Anti-bacterial and Thermal Stability.” Ind. Crops Prod., 47 160–167 (2013)

    Article  Google Scholar 

  43. Farouk, A, Moussa, S, Ulbricht, M, et al., “ZnO Nanoparticles-Chitosan Composite as Antibacterial Finish for Textiles.” Int. J. Carbohydr. Chem., 2012 e693629 (2012)

    Article  Google Scholar 

  44. Abd Elhady, MM, “Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric.” Int. J. Carbohydr. Chem., 2012 e840591 (2012)

    Google Scholar 

  45. Jin, C, Jiang, Y, Niu, T, et al., “Cellulose-Based Material with Amphiphobicity to Inhibit Bacterial Adhesion by Surface Modification.” Mater. Chem., 22 2562–12567 (2012)

    Google Scholar 

  46. Alonso, D, Gimeno, M, Olayo, R, et al., “Cross Linking Chitosan into UV-Irradiated Cellulose Fibers for Preparation Antibacterial-Finished Textiles.” Carbohydr. Polym., 77 (3) 536–543 (2009)

    Article  Google Scholar 

  47. Cheng, Q, Li, C, Pavlinek, V, et al., “Surface-Modified Antibacterial TiO2/Ag Nanoparticles, Preparation Properties.” Appl. Surf. Sci., 252 4154–4160 (2006)

    Article  Google Scholar 

  48. Abdel-Mohsen, AM, Aly, AS, Hrdina, R, et al., “Antibacterial Activity and Cell Viability of Hyaluronan Fiber with Silver Nanoparticles.” J. Polym. Environ., 20 104–116 (2012)

    Article  Google Scholar 

  49. Huang, J, Gu, Y, “Self-Assembly of Various Guest Substrates in Natural Cellulose Substances to Functional Nanostructured Materials.” Curr. Opin. Colloid Interface. Sci., 16 470–481 (2011)

    Article  Google Scholar 

  50. Alongi, J, Ciobanu, M, Malucelli, G, “Thermal Stability, Flame Retardancy and Mechanical Properties of Cotton Fabrics Treated with Inorganic Coatings Synthesized Through Sol–Gel Processes.” Carbohydr. Polym., 87 2093–2099 (2012)

    Article  Google Scholar 

  51. Harifi, T, Montazer, MA, “Review on Textile Sonoprocessing, A Special Focus on Sonosynthesis of Nanomaterials on Textile Substrates.” Ultrason. Sonochem., 23 1–10 (2015)

    Article  Google Scholar 

  52. Rezapour, M, Talebian, N, “Comparison of Structural, Optical Properties and Photocatalytic Activity of ZnO with Different Morphologies: Effect of Synthesis Methods and Reaction Media.” Mater. Chem. Phys., 129 249–255 (2011)

    Article  Google Scholar 

  53. Mathew, AP, Oksman, K, Sain, M, “Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC).” J. Appl. Polym. Sci., 97 (5) 2014–2025 (2005)

    Article  Google Scholar 

  54. Mridha, S, Basak, D, “Effect of Thickness on the Structural, Electrical and Optical Properties of ZnO Films.” Mater. Res. Bull., 42 875–882 (2007)

    Article  Google Scholar 

  55. Ganesh, EP, Dnyaneshwar, DK, Gaikwad, VB, et al., “Preparation and Characterization of SnO2 Nanoparticles by Hydrothermal Route.” Int. Nano Lett., 2 (17) 1–5 (2012)

    Google Scholar 

  56. Perelshtein, I, Applerot, G, Perkas, N, et al., “A One-Step Process for the Antimicrobial Finishing of Textiles with Crystalline TiO2 Nanoparticles.” Chem. Eur. J., 18 4575–4582 (2012)

    Article  Google Scholar 

  57. Perelshtein, I, Ruderman, E, Perkas, N, et al., “Chitosan and Chitosan–ZnO-Based Complex Nanoparticles, Formation, Characterization, and Antibacterial Activity.” J. Mater. Chem. B, 1 1968–1976 (2013)

    Article  Google Scholar 

  58. Hirota, K, Sugimoto, M, Kato, M, et al., “Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity Under Dark Conditions.” Ceram. Int., 36 497–506 (2010)

    Article  Google Scholar 

  59. Song, W, Zhang, J, Guo, J, et al., “Role of the Dissolved Zinc Ion and Reactive Oxygen Species in Cytotoxicity of ZnO Nanoparticles.” Toxicol. Lett., 199 389–397 (2010)

    Article  Google Scholar 

  60. Ma, H, Williams, PL, Diamond, SA, “Ecotoxicity of Manufactured ZnO Nanoparticles.” Environ. Pollut., 172 76–85 (2013)

    Article  Google Scholar 

  61. Sasidharan, A, Parwathy, C, Menon, D, et al., “Rapid Dissolution of ZnO Nanocrystals in Acidic Cancer Microenvironment Leading to Preferential Apoptosis.” Nanoscale, 3 3657–3669 (2011)

    Article  Google Scholar 

  62. Fukui, H, Horie, M, Endoh, S, et al., “Association of Zinc Ion Release and Oxidative Stress Induced by Intratracheal Instillation of ZnO Nanoparticles to Rat Lung.” Chem. Biol. Interact., 198 29–37 (2012)

    Article  Google Scholar 

  63. Ding, F, Nie, Z, Deng, H, et al., “Antibacterial Hydrogel Coating by Electrophoretic Co-deposition of Chitosan/Alkynyl Chitosan.” Carbohydr. Polym., 98 1547–1552 (2013)

    Article  Google Scholar 

  64. Wang, X, Du, Y, Liu, H, “Preparation, Characterization and Antimicrobial Activity of Chitosan–Zn Complex.” Carbohydr. Polym., 56 21–26 (2004)

    Article  Google Scholar 

  65. Sanpui, P, Murugadoss, A, Prasad, PVD, et al., “Chattopadhyay, The Antibacterial Properties of a Novel Chitosan–Ag-Nanoparticle Composite.” Int. J. Food Microbiol., 124 142–146 (2008)

    Article  Google Scholar 

  66. Wang, C, Lv, J, Ren, Y, et al., “Cotton Fabric with Plasma Pretreatment and ZnO/Carboxymethyl Chitosan Composite Finishing for Durable UV Resistance and Antibacterial Property.” Carbohydr. Polym., 138 106–113 (2016)

    Article  Google Scholar 

  67. Rabea, EI, Badawy, MET, Stevens, CV, et al., “Chitosan as Antimicrobial Agent, Applications Mode of Action.” Biomacromolecules, 4 1457–1465 (2003)

    Article  Google Scholar 

  68. Krishnaveni, R, Thambidurai, S, “Industrial Method of Cotton Fabric Finishing with Chitosan–ZnO Composite for Anti-bacterial and Thermal Stability.” Ind. Crops Prod., 47 160–167 (2013)

    Article  Google Scholar 

  69. Li, L-H, Deng, J-C, Deng, HR, et al., “Preparation, Characterization and Antimicrobial Activities of Chitosan/Ag/ZnO Blend Films.” Chem. Eng. J., 160 378–382 (2010)

    Article  Google Scholar 

  70. Orhan, M, Kut, D, Gunesoglu, C, “Improving the Antibacterial Activity of Cotton Fabrics Finished with Triclosan by the Use of 1,2,3,4-Butanetetracarboxylic Acid and Citric Acid.” J. Appl. Polym. Sci., 111 1344–1352 (2009)

    Article  Google Scholar 

  71. Zhang, Y, Shao, CL, Li, XH, “Electrospun Nanofibers of ZnO–SnO2 Heterojunction with High Photocatalytic Activity.” J. Phys. Chem. C, 114 7920–7925 (2010)

    Article  Google Scholar 

  72. Zhu, H-Y, Xiao, L, Jiang, R, et al., “Efficient Decolorization of Azo Dye Solution by Visible Light-Induced Photocatalytic Process Using SnO2/ZnO Heterojunction Immobilized in Chitosan Matrix.” Chem. Eng. J., 172 746–753 (2011)

    Article  Google Scholar 

  73. Talebian, N, Doudi, M, Mogoei, H, “Antibacterial Activities of Sol–Gel Derived ZnO-Multilayered Thin Films, p-NiO Heterojunction Layer Effect.” J. Sol-Gel. Sci. Technol., 74 650–660 (2015)

    Article  Google Scholar 

  74. Hans, M, Erbe, A, Mathews, S, et al., “Role of Copper Oxides in Contact Killing of Bacteria.” Langmuir, 29 (52) 16160–16166 (2013)

    Article  Google Scholar 

  75. Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 78 (1) 60–72 (2008)

    Article  Google Scholar 

  76. Suslick, KS, Price, GJ, “Applications of Ultrasound to Materials Chemistry.” Annu. Rev. Mater. Sci., 29 295–326 (1999)

    Article  Google Scholar 

  77. Perelshtein, I, Ruderman, Y, Perkas, N, et al., “Enzymatic Pre-treatment as a Means of Enhancing the Antibacterial Activity and Stability of ZnO Nanoparticles Sonochemically Coated on Cotton Fabrics.” J. Mater. Chem., 22 10736–10742 (2012)

    Article  Google Scholar 

  78. Yuranova, T, Laub, D, Kiwi, J, “Synthesis, Activity and Characterization of Textiles Showing Self-Cleaning Activity Under Daylight Irradiation.” Catal. Today, 122 109–117 (2007)

    Article  Google Scholar 

  79. Nazari, A, Montazer, M, Yazdanshenas, ME, et al., “Nano TiO2 Photo-catalyst and Sodium Hypophosphite for Cross-linking Cotton with Poly Carboxylic Acids Under UV High Temperature.” Appl. Catal. A Gen., 371 10–16 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Islamic Azad University, Shahreza Branch, for financial support to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Talebian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, P., Talebian, N. Sonochemically sol–gel derived coating of textiles using heterojunction SnO2/ZnO/chitosan bionanocomposites: in vitro antibacterial evaluation. J Coat Technol Res 15, 1133–1144 (2018). https://doi.org/10.1007/s11998-018-0057-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0057-4

Keywords

Navigation