Skip to main content

Advertisement

Log in

Speech Language Pathology in the Neurocritical Care Unit

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

A Correction to this article was published on 14 November 2023

This article has been updated

Abstract

Purpose of review

The aim of this study is to review the scope of practice of speech language pathologists (SLPs) in the daily practice of neurocritical care.

Recent findings

In patients with aphasia, impairment-based or function-based language interventions improve outcomes. Augmentative and alternative communication devices can help certain patients with severely impaired speech production. After tracheostomy, one-way speaking valves can be placed either in-line with a ventilator or after weaning; it has been shown that earlier placement is associated with faster decannulation. Swallow screening, bedside swallow evaluations, and instrumental swallowing evaluations such as videofluoroscopic swallow studies (VFSS) or fiberoptic endoscopic evaluation of swallowing (FEES) are valuable tools for diagnosing dysphagia and identifying candidates for percutaneous enteral gastrostomy. Deficit-based rehabilitation of dysphagia is centered on re-training swallowing muscles and reorganizing neural synapses involved in swallowing function, capitalizing on the principles of neuroplasticity and motor learning. Neuromodulation therapies such as pharyngeal electrical stimulation can promote functional reorganization of cortical pathways involved in swallowing and show promise to improve swallow function and reduce aspiration risk.

Summary

SLPs are essential members of the multi-disciplinary neurocritical care team, particularly with regard to the evaluation and management of communication, cognition, and swallowing dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Elpern EH, Borkgren Okonek M, Bacon M, Gerstung C, Skrzynski M. Effect of the Passy-Muir tracheostomy speaking valve on pulmonary aspiration in adults. Heart & Lung: the journal of critical care. 2000;29(4):287–93. https://doi.org/10.1067/mhl.2000.106941.

Fig. 2

Reproduced from Langmore SE, Schatz K, Olson N. Fiberoptic endoscopic examination of swallowing safety: a new procedure. Dysphagia. 1988;2:216–19.

Fig. 3

Reproduced with permission from Phagenesis, Inc. on 6/2/23.

Similar content being viewed by others

Change history

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brady MC, Kelly H, Godwin J, Enderby P, Campbell P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2016;2016(6):CD000425. https://doi.org/10.1002/14651858.CD000425.pub4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Norman RS, Swan AA, Jenkins A, Ballard M, Amuan M, Pugh MJ. Updating and refining prevalence rates of traumatic brain injury–related communication disorders among post-9/11 veterans: a chronic effects of neurotrauma consortium study. SIG 2 Neurogenic Communication Disorders. 2021:6(5):1060–72.

  3. Johansen MC, Langton-Frost N, Gottesman RF. The role of cardiovascular disease in cognitive impairment. Curr Geri Rep. 2020:9:1–9. https://doi.org/10.1007/s13670-020-00309-7.

  4. Takizawa C, Gemmell E, Kenworthy J, Speyer R. A systematic review of the prevalence of oropharyngeal dysphagia in stroke, parkinson’s disease, alzheimer’s disease, head injury, and pneumonia. Dysphagia. 2016;31(3):434–41. https://doi.org/10.1007/s00455-016-9695-9.

    Article  PubMed  Google Scholar 

  5. McCann MR, Hatton KW, Vsevolozhskaya OA, Fraser JF. Earlier tracheostomy and percutaneous endoscopic gastrostomy in patients with hemorrhagic stroke: associated factors and effects on hospitalization. J Neurosurg. 2019;132(1):87–93. https://doi.org/10.3171/2018.7.JNS181345.

    Article  PubMed  Google Scholar 

  6. Allareddy V, Rampa S, Nalliah RP, et al. Prevalence and predictors of gastrostomy tube and tracheostomy placement in anoxic/hypoxic ischemic encephalopathic survivors of in-hospital cardiopulmonary resuscitation in the United States. PLoS ONE. 2015;10(7):e0132612. https://doi.org/10.1371/journal.pone.0132612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angstwurm K, Vidal A, Stetefeld H, et al. Early tracheostomy is associated with shorter ventilation time and duration of ICU stay in patients with myasthenic crisis-A multicenter analysis. J Intensive Care Med. 2022;37(1):32–40. https://doi.org/10.1177/0885066620967646.

    Article  PubMed  Google Scholar 

  8. Dunn K, Rumbach A, Finch E. Language function in the acute phase following non-traumatic subarachnoid haemorrhage: a prospective cohort study. J Commun Disord. 2022;96:106192. https://doi.org/10.1016/j.jcomdis.2022.106192.

  9. Godecke E, Hird K, Lalor EE, Rai T, Phillips MR. Very early poststroke aphasia therapy: a pilot randomized controlled efficacy trial. Int J Stroke. 2012;7(8):635–44. https://doi.org/10.1111/j.1747-4949.2011.00631.x.

    Article  PubMed  Google Scholar 

  10. Godecke E, Armstrong E, Rai T, Ciccone N, Rose ML, Middleton S, et al. for the VERSE Collaborative Group. A randomized control trial of intensive aphasia therapy after acute stroke: The Very Early Rehabilitation for SpEech (VERSE) study. Int J Stroke. 2021;16(5):556–72. https://doi.org/10.1177/1747493020961926.

  11. Vitti E, Hillis AE. Treatment of post-stroke aphasia: a narrative review for stroke neurologists. Int J Stroke. 2021;16(9):1002–8. https://doi.org/10.1177/17474930211017807.

    Article  PubMed  Google Scholar 

  12. Shewan CM, Kertesz A. Reliability and validity characteristics of the Western Aphasia Battery (WAB). J Speech Hear Disord. 1980;45(3):308–24. https://doi.org/10.1044/jshd.4503.308.

    Article  CAS  PubMed  Google Scholar 

  13. Berube S, Nonnemacher J, Demsky C, et al. Stealing cookies in the twenty-first century: measures of spoken narrative in healthy versus speakers with aphasia. Am J Speech Lang Pathol. 2019;28(1S):321–9. https://doi.org/10.1044/2018_AJSLP-17-0131.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Edmonds LA, Mammino K, Ojeda J. Effect of verb network strengthening treatment (VNeST) in persons with aphasia: extension and replication of previous findings. Am J Speech Lang Pathol. 2014;23(2):S312–29. https://doi.org/10.1044/2014_AJSLP-13-0098.

    Article  PubMed  Google Scholar 

  15. Efstratiadou EA, Papathanasiou I, Holland R, Archonti A, Hilari K. A systematic review of semantic feature analysis therapy studies for aphasia. J Speech Lang Hear Res. 2018;61(5):1261–78. https://doi.org/10.1044/2018_JSLHR-L-16-0330.

    Article  PubMed  Google Scholar 

  16. Minkina I, Silkes JP, Bislick L, et al. The influence of phonomotor treatment on word retrieval: insights from naming errors. J Speech Lang Hear Res. 2019;62(11):4080–104. https://doi.org/10.1044/2019_JSLHR-L-19-0014.

    Article  PubMed  Google Scholar 

  17. Armour M, Brady S, Sayyad A, Krieger R. Self-reported quality of life outcomes in aphasia using life participation approach values: 1-year outcomes. Arch Rehabil Res Clin Transl. 2019;1(3–4):100025. https://doi.org/10.1016/j.arrct.2019.100025.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garry J, Casey K, Cole TK, et al. A pilot study of eye-tracking devices in intensive care. Surgery. 2016;159(3):938–44. https://doi.org/10.1016/j.surg.2015.08.012.

    Article  PubMed  Google Scholar 

  19. • Ju XX, Yang J, Liu XX. A systematic review on voiceless patients' willingness to adopt high-technology augmentative and alternative communication in intensive care units. Intensive Crit Care Nurs. 2021;63:102948. https://doi.org/10.1016/j.iccn.2020.102948. This systematic review investigated the efficacy of AAC interventions in ICU patients. The final analysis included 18 studies across 914 participants. Six studies found that high-tech AAC tools facilitated ease of communication with health care staff. Six studies also found that these tools lead to decreased anxiety and depression.

  20. Happ MB, Baumann BM, Sawicki J, Tate JA, George EL, Barnato AE. SPEACS-2: intensive care unit “communication rounds” with speech language pathology. Geriatr Nurs. 2010;31(3):170–7. https://doi.org/10.1016/j.gerinurse.2010.03.004.

    Article  PubMed  Google Scholar 

  21. Trotta RL, Hermann RM, Polomano RC, Happ MB. Improving nonvocal critical care patients’ ease of communication using a modified SPEACS-2 program. J Healthc Qual. 2020;42(1):e1–9. https://doi.org/10.1097/JHQ.0000000000000163.

    Article  PubMed  Google Scholar 

  22. Rose L, Sutt AL, Amaral AC, Fergusson DA, Smith OM, Dale CM. Interventions to enable communication for adult patients requiring an artificial airway with or without mechanical ventilator support. Cochrane Database Syst Rev. 2021;10(10):CD013379. https://doi.org/10.1002/14651858.CD013379.pub2.

  23. Zahari Y, Wan Hassan WMN, Hassan MH, Mohamad Zaini RH, Abdullah B. The practice, outcome and complications of tracheostomy in traumatic brain injury patients in a neurosurgical intensive care unit: surgical versus percutaneous tracheostomy and early versus late tracheostomy. Malays J Med Sci. 2022;29(3):68–79. https://doi.org/10.21315/mjms2022.29.3.7.

  24. Mccredie VA, Alali AS, Scales DC, Adhikari NKJ, Rubenfeld GD, Cuthbertson BH, et al. Effect of early versus late tracheostomy or prolonged intubation in critically ill patients with acute brain injury: a systematic review and meta-analysis. Neurocrit Care. 2017;26(1):14–25. https://doi.org/10.1007/s12028-016-0297-z.

    Article  PubMed  Google Scholar 

  25. Bösel J, Niesen W, Salih F, et al. Effect of early vs standard approach to tracheostomy on functional outcome at 6 months among patients with severe stroke receiving mechanical ventilation: the SETPOINT2 randomized clinical trial. JAMA. 2022;327(19):1899–909. https://doi.org/10.1001/jama.2022.4798.

    Article  PubMed  PubMed Central  Google Scholar 

  26. • Davis S, Weyh AM, Salman SO, Madbak F, Fraker JT. Speech pathology services are integral, but underutilized in tracheostomy rehabilitation. Craniomaxillofac Trauma Reconstr. 2021;14(2):110–8. https://doi.org/10.1177/1943387520948381. This case series examined the use of SLPs in rehabilitation of tracheostomy. The authors determined that the mean time lag from tracheostomy to first SLP encounter was 5.9 ± 8.0 days. The study also demonstrated an improvement in decannulation following SLP utilization.

  27. Hess DR. Facilitating speech in the patient with a tracheostomy. Respir Care. 2005;50(4):519–25.

    PubMed  Google Scholar 

  28. Hernandez G, Pedrosa A, Ortiz R, Cruz Accuaroni MDM, Cuena R, Vaquero Collado C, et al. The effects of increasing effective airway diameter on weaning from mechanical ventilation in tracheostomized patients: a randomized controlled trial. Intensive Care Med. 2013;39(6):1063–70. https://doi.org/10.1007/s00134-013-2870-7.

    Article  PubMed  Google Scholar 

  29. Amathieu R, Sauvat S, Reynaud P, et al. Influence of the cuff pressure on the swallowing reflex in tracheostomized intensive care unit patients. Br J Anaesth. 2012;109(4):578–83. https://doi.org/10.1093/bja/aes210.

    Article  CAS  PubMed  Google Scholar 

  30. Lian S, Teng L, Mao Z, Jiang H. Clinical utility and future direction of speaking valve: a review. Front Surg. 2022;9:913147. https://doi.org/10.3389/fsurg.2022.913147.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sutt AL, Caruana LR, Dunster KR, Cornwell PL, Anstey CM, Fraser JF. Speaking valves in tracheostomised ICU patients weaning off mechanical ventilation—do they facilitate lung recruitment? Crit Care. 2016;20:91. https://doi.org/10.1186/s13054-016-1249-x.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suiter DM, McCullough GH, Powell PW. Effects of cuff deflation and one-way tracheostomy speaking valve placement on swallow physiology. Dysphagia. 2003;18(4):284–92. https://doi.org/10.1007/s00455-003-0022-x.

    Article  PubMed  Google Scholar 

  33. Sutt AL, Cornwell P, Mullany D, Kinneally T, Fraser JF. The use of tracheostomy speaking valves in mechanically ventilated patients results in improved communication and does not prolong ventilation time in cardiothoracic intensive care unit patients. J Crit Care. 2015;30(3):491–4.

    Article  PubMed  Google Scholar 

  34. •• Martin KA, Cole TDK, Percha CM, Asanuma N, Mattare K, Hager DN, et al. Standard versus accelerated speaking valve placement after percutaneous tracheostomy: a randomized controlled feasibility study. Ann Am Thorac Soc. 2021;18(10):1693–701. https://doi.org/10.1513/AnnalsATS.202010-1282OC. This trial compared placement of a one-way speaking valve within an accelerated (median 22, interquartile range [IQR] 21–23 hours) versus standard time frame (median 45.5, IQR 43-) hours). Patients in the early speaking valve placement had a longer tolerance of speaking valve use (median 65, IQR 45–720 vs 15, IQR 3–20 mins) overall. There were no aspiration or hypoxic events in either group. This study highlights the feasibility and safety of early speaking valve placement after tracheostomy.

  35. Giacino JT, Sherer M, Christoforou A, et al. Behavioral recovery and early decision making in patients with prolonged disturbance in consciousness after traumatic brain injury. J Neurotrauma. 2020;37(2):357–65. https://doi.org/10.1089/neu.2019.6429.

    Article  PubMed  Google Scholar 

  36. Hammond FM, Giacino JT, Nakase Richardson R, et al. Disorders of consciousness due to traumatic brain injury: functional status ten years post-injury. J Neurotrauma. 2019;36(7):1136–46. https://doi.org/10.1089/neu.2018.5954.

    Article  PubMed  Google Scholar 

  37. Gurin L, Evangelist M, Laverty P, et al. Early neurorehabilitation and recovery from disorders of consciousness after severe COVID-19. Neurocrit Care. 2022;36(2):357–71. https://doi.org/10.1007/s12028-021-01359-1.

    Article  CAS  PubMed  Google Scholar 

  38. Seel RT, Douglas J, Dennison AC, Heaner S, Farris K, Rogers C. Specialized early treatment for persons with disorders of consciousness: program components and outcomes. Arch Phys Med Rehabil. 2013;94(10):1908–23. https://doi.org/10.1016/j.apmr.2012.11.052.

    Article  PubMed  Google Scholar 

  39. Pape TL, Rosenow JM, Steiner M, et al. Placebo-controlled trial of familiar auditory sensory training for acute severe traumatic brain injury: a preliminary report. Neurorehabil Neural Repair. 2015;29(6):537–47. https://doi.org/10.1177/1545968314554626.

    Article  PubMed  Google Scholar 

  40. Moattari M, Alizadeh Shirazi F, Sharifi N, Zareh N. Effects of a sensory stimulation by nurses and families on level of cognitive function, and basic cognitive sensory recovery of comatose patients with severe traumatic brain injury: a randomized control trial. Trauma Mon. 2016;21(4):e23531. https://doi.org/10.5812/traumamon.23531.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fiest KM, Soo A, Hee Lee C, et al. Long-term outcomes in ICU patients with delirium: a population-based cohort study. Am J Respir Crit Care Med. 2021;204(4):412–20. https://doi.org/10.1164/rccm.202002-0320OC.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Devlin JW, Skrobik Y, Gélinas C, et al. Executive summary: clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):1532–48. https://doi.org/10.1097/CCM.0000000000003259.

    Article  PubMed  Google Scholar 

  43. Deemer K, Zjadewicz K, Fiest K, et al. Effect of early cognitive interventions on delirium in critically ill patients: a systematic review. Can J Anaesth. 2020;67(8):1016–34. https://doi.org/10.1007/s12630-020-01670-z.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rivosecchi RM, Kane-Gill SL, Svec S, Campbell S, Smithburger PL. The implementation of a nonpharmacologic protocol to prevent intensive care delirium. J Crit Care. 2016;31(1):206–11. https://doi.org/10.1016/j.jcrc.2015.09.031.

    Article  PubMed  Google Scholar 

  45. •• Faustino TN, Suzart NA, Rabelo RNDS, et al. Effectiveness of combined non-pharmacological interventions in the prevention of delirium in critically ill patients: a randomized clinical trial. J Crit Care. 2022;68:114–20. https://doi.org/10.1016/j.jcrc.2021.12.015. The authors found that numerous non-pharmacologic interventions (including reorientation, cognitive stimulation, and environmental management) were sufficient to significantly reduce the incidence of delirium in the ICU compared to a placebo group.

  46. Álvarez EA, Garrido MA, Tobar EA, et al. Occupational therapy for delirium management in elderly patients without mechanical ventilation in an intensive care unit: a pilot randomized clinical trial. J Crit Care. 2017;37:85–90. https://doi.org/10.1016/j.jcrc.2016.09.002.

    Article  PubMed  Google Scholar 

  47. Brummel NE, Girard TD, Ely EW, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the activity and cognitive therapy in ICU (ACT-ICU) trial. Intensive Care Med. 2014;40(3):370–9. https://doi.org/10.1007/s00134-013-3136-0.

    Article  CAS  PubMed  Google Scholar 

  48. Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF bundle in critical care. Crit Care Clin. 2017;33(2):225–43. https://doi.org/10.1016/j.ccc.2016.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Skoretz SA, Flowers HL, Martino R. The incidence of dysphagia following endotracheal intubation: a systematic review. Chest. 2010;137(3):665–73. https://doi.org/10.1378/chest.09-1823.

    Article  PubMed  Google Scholar 

  50. Macht M, Wimbish T, Bodine C, Moss M. ICU-acquired swallowing disorders. Crit Care Med. 2013;41(10):2396–405. https://doi.org/10.1097/CCM.0b013e31829caf33.

    Article  PubMed  Google Scholar 

  51. Brodsky MB, Pandian V, Needham DM. Post-extubation dysphagia: a problem needing multidisciplinary efforts. Intensive Care Med. 2020;46(1):93–6. https://doi.org/10.1007/s00134-019-05865-x.

    Article  PubMed  Google Scholar 

  52. DePippo KL, Holas MA, Reding MJ. Validation of the 3-oz water swallow test for aspiration following stroke. Arch Neurol. 1992;49(12):1259–61. https://doi.org/10.1001/archneur.1992.00530360057018.

    Article  CAS  PubMed  Google Scholar 

  53. Suiter DM, Leder SB. Clinical utility of the 3-ounce water swallow test. Dysphagia. 2008;23(3):244–50. https://doi.org/10.1007/s00455-007-9127-y.

    Article  PubMed  Google Scholar 

  54. Warner HL, Suiter DM, Nystrom KV, Poskus K, Leder SB. Comparing accuracy of the Yale swallow protocol when administered by registered nurses and speech-language pathologists. J Clin Nurs. 2014;23(13–14):1908–15. https://doi.org/10.1111/jocn.12340.

    Article  PubMed  Google Scholar 

  55. Martino R, Silver F, Teasell R, et al. The Toronto bedside swallowing screening test (TOR-BSST): development and validation of a dysphagia screening tool for patients with stroke. Stroke. 2009;40(2):555–61. https://doi.org/10.1161/STROKEAHA.107.510370.

    Article  PubMed  Google Scholar 

  56. Estupiñán Artiles C, Regan J, Donnellan C. Dysphagia screening in residential care settings: a scoping review. Int J Nurs Stud. 2021;114:103813. https://doi.org/10.1016/j.ijnurstu.2020.103813.

    Article  PubMed  Google Scholar 

  57. Martin-Harris B, Canon CL, Bonilha HS, Murray J, Davidson K, Lefton-Greif MA. Best practices in modified barium swallow studies. Am J Speech Lang Pathol. 2020;29(2S):1078–93. https://doi.org/10.1044/2020_AJSLP-19-00189.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Warnecke T, Dziewas R, Langmore S. FEES and other instrumental methods for swallowing evaluation. In: Neurogenic Dysphagia. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-42140-3_3.

  59. Altman KW, Richards A, Goldberg L, Frucht S, McCabe DJ. Dysphagia in stroke, neurodegenerative disease, and advanced dementia. Otolaryngol Clin North Am. 2013;46(6):1137–49. https://doi.org/10.1016/j.otc.2013.08.005.

    Article  PubMed  Google Scholar 

  60. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418. https://doi.org/10.1161/STR.0000000000000211.

    Article  PubMed  Google Scholar 

  61. Dennis MS, Lewis SC, Warlow C, FOOD Trial Collaboration. Effect of timing and method of enteral tube feeding for dysphagic stroke patients (FOOD): a multicentre randomised controlled trial. Lancet. 2005;365(9461):764–72. https://doi.org/10.1016/S0140-6736(05)17983-5.

  62. Wilmskoetter J, Simpson AN, Simpson KN, Bonilha HS. Practice patterns of percutaneous endoscopic gastrostomy tube placement in acute stroke: are the guidelines achievable? J Stroke Cerebrovasc Dis. 2016;25(11):2694–700. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.017.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wilmskoetter J, Herbert TL, Bonilha HS. Factors associated with gastrostomy tube removal in patients with dysphagia after stroke: a review of the literature. Nutr Clin Pract. 2017;32(2):166–74.

    Article  PubMed  Google Scholar 

  64. D’Netto P, Rumbach A, Dunn K, Finch E. Clinical predictors of dysphagia recovery after stroke: a systematic review. Dysphagia. 2023;38(1):1–22. https://doi.org/10.1007/s00455-022-10443-3.

    Article  PubMed  Google Scholar 

  65. Panebianco M, Marchese-Ragona R, Masiero S, Restivo DA. Dysphagia in neurological diseases: a literature review. Neurol Sci. 2020;41(11):3067–73. https://doi.org/10.1007/s10072-020-04495-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–39. https://doi.org/10.1044/1092-4388(2008/018).

    Article  PubMed  Google Scholar 

  67. Burkhead Morgan L. Exercise-based dysphagia rehabilitation: past, present, and future. Perspectives of the ASHA Special Interest Groups: SIG 13 Swallowing and Swallowing Disorders (Dysphagia). 2017;2(13):36–43. https://doi.org/10.1044/persp2.SIG13.36.

  68. Shaker R, Easterling C, Kern M, et al. Rehabilitation of swallowing by exercise in tube-fed patients with pharyngeal dysphagia secondary to abnormal UES opening. Gastroenterology. 2002;122(5):1314–21. https://doi.org/10.1053/gast.2002.32999.

    Article  PubMed  Google Scholar 

  69. Heslin N, Regan J. Effect of effortful swallow on pharyngeal pressures during swallowing in adults with dysphagia: a pharyngeal high-resolution manometry study. Int J Speech Lang Pathol. 2022;24(2):190–9. https://doi.org/10.1080/17549507.2021.1975817.

    Article  PubMed  Google Scholar 

  70. Archer SK, Smith CH, Newham DJ. Surface electromyographic biofeedback and the effortful swallow exercise for stroke-related dysphagia and in healthy ageing. Dysphagia. 2021;36(2):281–92. https://doi.org/10.1007/s00455-020-10129-8.

    Article  PubMed  Google Scholar 

  71. Bahia MM, Lowell SY. A systematic review of the physiological effects of the effortful swallow maneuver in adults with normal and disordered swallowing. Am J Speech Lang Pathol. 2020;29(3):1655–73. https://doi.org/10.1044/2020_AJSLP-19-00132.

    Article  PubMed  Google Scholar 

  72. Steele CM, Bailey GL, Polacco RE, et al. Outcomes of tongue-pressure strength and accuracy training for dysphagia following acquired brain injury. Int J Speech Lang Pathol. 2013;15(5):492–502. https://doi.org/10.3109/17549507.2012.752864.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Franciotti R, Di Maria E, D'Attilio M, Aprile G, Cosentino FG, Perrotti V. Quantitative measurement of swallowing performance using iowa oral performance instrument: a systematic review and meta-analysis. Biomedicines. 2022;10(9):2319. Published 2022 Sep 18. https://doi.org/10.3390/biomedicines10092319.

  74. Park JS, Kim HJ, Oh DH. Effect of tongue strength training using the Iowa Oral Performance Instrument in stroke patients with dysphagia. J Phys Ther Sci. 2015;27(12):3631–4. https://doi.org/10.1589/jpts.27.3631.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol (1985). 2006;101(6):1776–82. https://doi.org/10.1152/japplphysiol.00515.2006.

  76. Athukorala RP, Jones RD, Sella O, Huckabee ML. Skill training for swallowing rehabilitation in patients with Parkinson’s disease. Arch Phys Med Rehabil. 2014;95(7):1374–82. https://doi.org/10.1016/j.apmr.2014.03.001.

    Article  PubMed  Google Scholar 

  77. Troche MS, Curtis JA, Sevitz JS, et al. Rehabilitating cough dysfunction in parkinson’s disease: A randomized controlled trial. Mov Disord. 2023;38(2):201–11. https://doi.org/10.1002/mds.29268.

    Article  PubMed  Google Scholar 

  78. Benfield JK, Everton LF, Bath PM, England TJ. Does therapy with biofeedback improve swallowing in adults with dysphagia? A systematic review and meta-analysis. Arch Phys Med Rehabil. 2019;100(3):551–61. https://doi.org/10.1016/j.apmr.2018.04.031.

    Article  PubMed  Google Scholar 

  79. Perry SE, Sevitz JS, Curtis JA, Kuo SH, Troche MS. Skill training resulted in improved swallowing in a person with multiple system atrophy: an endoscopy study. Mov Disord Clin Pract. 2018;5(4):451–2. https://doi.org/10.1002/mdc3.12628.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nordio S, Arcara G, Berta G, et al. Biofeedback as an adjunctive treatment for post-stroke dysphagia: a pilot-randomized controlled trial. Dysphagia. 2022;37(5):1207–16. https://doi.org/10.1007/s00455-021-10385-2.

    Article  PubMed  Google Scholar 

  81. Malandraki GA, Rajappa A, Kantarcigil C, Wagner E, Ivey C, Youse K. The intensive dysphagia rehabilitation approach applied to patients with neurogenic dysphagia: a case series design study. Arch Phys Med Rehabil. 2016;97(4):567–74. https://doi.org/10.1016/j.apmr.2015.11.019.

    Article  PubMed  Google Scholar 

  82. Carnaby-Mann GD, Crary MA. McNeill dysphagia therapy program: a case-control study. Arch Phys Med Rehabil. 2010;91(5):743–9. https://doi.org/10.1016/j.apmr.2010.01.013.

    Article  PubMed  Google Scholar 

  83. Cola PC, Gatto AR, da Silva RG, et al. Taste and temperature in swallowing transit time after stroke. Cerebrovasc Dis Extra. 2012;2(1):45–51. https://doi.org/10.1159/000339888.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Peña-Chávez RE, Schaen-Heacock NE, Hitchcock ME, et al. Effects of food and liquid properties on swallowing physiology and function in adults. Dysphagia. 2023;38(3):785–817. https://doi.org/10.1007/s00455-022-10525-2.

    Article  PubMed  Google Scholar 

  85. Bisch EM, Logemann JA, Rademaker AW, Kahrilas PJ, Lazarus CL. Pharyngeal effects of bolus volume, viscosity, and temperature in patients with dysphagia resulting from neurologic impairment and in normal subjects. J Speech Hear Res. 1994;37(5):1041–59. https://doi.org/10.1044/jshr.3705.1041.

    Article  CAS  PubMed  Google Scholar 

  86. Suntrup S, Marian T, Schröder JB, Suttrup I, Muhle P, Oelenberg S, et al. Electrical pharyngeal stimulation for dysphagia treatment in tracheotomized stroke patients: a randomized controlled trial. Intensive Care Med. 2015;41(9):1629–37. https://doi.org/10.1007/s00134-015-3897-8.

    Article  CAS  PubMed  Google Scholar 

  87. Muhle P, Suntrup-Krueger S, Bittner S, et al. Increase of substance P concentration in saliva after pharyngeal electrical stimulation in severely dysphagic stroke patients—an indicator of decannulation success? Neurosignals. 2017;25(1):74–87. https://doi.org/10.1159/000482002.

    Article  PubMed  Google Scholar 

  88. Bath PM, Woodhouse LJ, Suntrup-Krueger S, et al. Pharyngeal electrical stimulation for neurogenic dysphagia following stroke, traumatic brain injury or other causes: main results from the PHADER cohort study. EClinicalMedicine. 2020;28: 100608. https://doi.org/10.1016/j.eclinm.2020.100608.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Morrell K, Hyers M, Stuchiner T, et al. Telehealth stroke dysphagia evaluation is safe and effective. Cerebrovasc Dis. 2017;44(3–4):225–31. https://doi.org/10.1159/000478107.

    Article  PubMed  Google Scholar 

  90. Burns CL, Ward EC, Hill AJ, Phillips N, Porter L. Conducting real-time videofluoroscopic swallow study via telepractice: a preliminary feasibility and reliability study. Dysphagia. 2016;31(3):473–83. https://doi.org/10.1007/s00455-016-9701-2.

    Article  PubMed  Google Scholar 

  91. Ward EC, Burns CL, Theodoros DG, Russell TG. Impact of dysphagia severity on clinical decision making via telerehabilitation. Telemed J E Health. 2014;20(4):296–303. https://doi.org/10.1089/tmj.2013.0198.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Duncan S, Mcauley DF, Walshe M, Mcgaughey J, Anand R, Fallis R, et al. Interventions for oropharyngeal dysphagia in acute and critical care: a systematic review and meta-analysis. Intensive Care Med. 2020;46(7):1326–38. https://doi.org/10.1007/s00134-020-06126-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan A. Mayer MD.

Ethics declarations

Conflict of Interest

Dr Mayer reports receiving consulting fees from Phagenesis Inc, maker of a pharyngeal electrical stimulation device. The other authors have no conflicts to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frost, N., Yuan, G., Zhang, J. et al. Speech Language Pathology in the Neurocritical Care Unit. Curr Treat Options Neurol 25, 499–516 (2023). https://doi.org/10.1007/s11940-023-00772-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-023-00772-5

Keywords

Navigation