Skip to main content

Advertisement

Log in

Dietary Treatments and New Therapeutic Perspective in GLUT1 Deficiency Syndrome

  • PEDIATRIC NEUROLOGY (HS SINGER, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

GLUT1 deficiency syndrome (GLUT1DS) results from impaired glucose transport into the brain: awareness of its wide phenotypic spectrum is a prerequisite in order to ensure an early diagnosis, treating the patients is the subsequent challenge to allow prompt compensation for the brain’s lack of fuel. The ketogenic diet (KD) plays a primary role in the treatment of GLUT1DS because it provides ketone bodies as an alternative source to meet the demands of energy of the brain. Therefore, we recommend early initiation of the KD based on the assumption that early diagnosis and treatment improves the long term neurological outcome: the classic KD (4:1 or 3:1) at the present time is the most proven and effective in GLUT1DS. A KD should be continued at least until adolescence, although there are reports of good tolerability even in adulthood, possibly with a less rigorous ratio; in our experience seizure and movement disorder control can be achieved by a 2:1 ketogenic ratio but the relationship between ketosis and neurodevelopmental outcome remains undetermined. Other types of KDs can, therefore, be considered. The Modified Atkins diet, for example, is also well tolerated and provides effective symptom control; furthermore, this diet has the advantage of being easy to prepare and more palatable, which are important requirements for good compliance. Nevertheless, about 20 % of these patients have compliance trouble or the same diet loses its effectiveness over time; for these reasons, new therapeutic strategies are currently under investigation but further studies on pathophysiological mechanisms and potential effects of novel “diets” or “therapies” are needed for this new pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997;21:2–21.

    Article  PubMed  CAS  Google Scholar 

  2. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behman RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325:703–9.

    Article  PubMed  Google Scholar 

  3. Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57:111–8.

    Article  PubMed  CAS  Google Scholar 

  4. Brockmann K. The expanding phenotype of GLUT1-deficiency syndrome. Brain and Development. 2009;31:545–52.

    Article  PubMed  Google Scholar 

  5. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70.

    Article  PubMed  Google Scholar 

  6. Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, et al. Paroxysmal exerciseinduced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131:1831–44.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25:275–81.

    Article  PubMed  Google Scholar 

  8. Klepper J, Scheffer H, Elsaid MF, Jamsteeg E-J, Leferink M, Ben-Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics. 2009;40:207–10.

    Article  PubMed  CAS  Google Scholar 

  9. Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung WK, et al. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68:955–8.

    Article  PubMed Central  PubMed  Google Scholar 

  10. De Giorgis V, Veggiotti P. GLUT1 deficiency syndrome 2013: current state of the art. Seizure. 2013;22(10):803–11. This recent review clearly details the different GLUT1DS phenotypes, highlights the latest diagnostic and therapeutic procedures and it provides a handy and useful diagnostic flow chart.

    Article  PubMed  Google Scholar 

  11. Ramm-Pettersen A, Nakken KO, Skogseid IM, Randby H, Skei EB, Bindoff LA, et al. Good outcome in patients with early dietary treatment of GLUT-1 deficiency syndrome: results from a retrospective Norwegian study. Dev Med Child Neurol. 2013;55(5):440–7.

    Article  PubMed  Google Scholar 

  12. Gras D, Roze E, Caillet S, Méneret A, Doummar D, Billette de Villemeur T, et al. GLUT1 deficiency syndrome: an update. Rev Neurol (Paris). 2013 Nov 20.

  13. Veggiotti P, Teutonico F, Alfei E, Nardocci N, Zorzi G, Tagliabue A, et al. Glucose transporter type 1 deficiency: ketogenic diet in three patients with atypical phenotype. Brain Dev. 2010;32:404–8.

    Article  PubMed  Google Scholar 

  14. Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcome. Epilepsia. 2012;53(9):503–10. This retrospective study details the epilepsy phenotypes and treatment response to the ketogenic diet and anticonvulsant mediations in 87 patients with Glut1DS.

    Article  CAS  Google Scholar 

  15. Klepper J, Scheffer H, Leiendecker B, Gertsen E, Binder S, Leferink M, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36(5):302–8.

    Article  PubMed  CAS  Google Scholar 

  16. Tzadok M, Nissenkorn A, Porper K, Matot I, Marcu S, Anikster Y, et al. The many faces of glut1 deficiency syndrome. J Child Neurol. 2014;29(3):349–59. doi:10.1177/0883073812471718.

    Article  PubMed  Google Scholar 

  17. Klepper J, Leiendecker B. Glut1 deficiency syndrome and novel ketogenic diets. J Child Neurol. 2013;28(8):1045–8. It is a clear, concise and detailed paper on the current data on novel ketogenic diets and faces the implications on the use of these diets in regard to GLUT1DS.

    Article  PubMed  Google Scholar 

  18. Klepper J. GLUT1 deficiency syndrome in clinical practice. Epilepsy Res. 2012;100:272–7. This accurate and precise review is useful for a practical approach in the suspicion of GLUT1DS. It faces the complexity of symptoms’ recognition, the genetic heterogeneity and diagnostic difficulties about cut-offs for hypoglycorrhachia.

    Article  PubMed  CAS  Google Scholar 

  19. Kim DW, Kang HC, Park JC, Kim HD. Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet. Pediatrics. 2004;114:1627–30.

    Article  PubMed  Google Scholar 

  20. Kossoff EH, McGrogan JR, Bluml RM. A modified Atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia. 2006;47:421–4.

    Article  PubMed  Google Scholar 

  21. Kossoff EH, Cervenka MC, Henry BJ, Haney CA, Turner Z. A decade of the modified Atkins diet (2003–2013): results, insights, and future directions. Epilepsy Behav. 2013;29(3):437–42. This review discusses the past decade of experience with the modified Atkins diet with results demonstrating similar efficacy to the classical ketogenic diet and its tolerability.

    Article  PubMed  Google Scholar 

  22. Haberlandt E, Karall D, Jud V, Baumgartner SS, Zotter S, Rostasy K, et al. Glucose transporter type 1 deficiency syndrome effectively treated with modified Atkins diet. Neuropediatrics. 2013 Jul 25.

  23. Pfeifer HH, Thiele EA. Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology. 2005;5:1810–2.

    Article  CAS  Google Scholar 

  24. Kossoff EH, Freeman JM, Turner Z, Rubenstein JE. Ketogenic diets: treatments for epilepsy and other disorders. 5th ed. New York NY: Demos Medical; 2011. Clear and complete overview on the ketogenic diets, with particular regard to the practical management in the different clinical pictures.

    Google Scholar 

  25. Yang H, Wang D, Engelstad K, Bagay L, Wei Y, Rotstein M, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70(6):996–1005.

    Article  PubMed  CAS  Google Scholar 

  26. Klepper J, Leiendecker B. GLUT1 deficiency syndrome – 2007 update. Dev Med Child Neurol. 2007;49:707–16.

    Article  PubMed  Google Scholar 

  27. Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Urbizu A, Cuenca-Leon E, Raspall-Chaure M, Gratacòs M, Conill J, Redecillas S, et al. Paroxysmal exercise-induced dyskinesia, writer’s cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295:110–3.

    Article  PubMed  CAS  Google Scholar 

  29. Friedman JR, Thiele EA, Wang D, Levine KB, Cloherty EK, Pfeifer HH. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006;21(2):241–5.

    Article  PubMed  Google Scholar 

  30. Gramer G, Wolf NI, Vater D, Bast T, Santer R, Kamsteeg EJ, et al. Glucose transporter-1 (GLUT1) deficiency syndrome: diagnosis and treatment in late childhood. Neuropediatrics. 2012;43(3):168–71. This paper interestingly describes symptoms, diagnostic results, and effects of therapy in two GLUT1-DS patients aged 10 and 15 years.

    Article  PubMed  CAS  Google Scholar 

  31. Ito S, Oguni H, Ito Y, Ishigaki K, Ohinata J, Osawa M. Modified Atkins diet therapy for a case with glucose transporter type 1 deficiency syndrome. Brain Dev. 2008;30:226–8.

    Article  PubMed  Google Scholar 

  32. Coman DJ, Sinclair KG, Burke CJ, Appleton DB, Pelekanos JT, O'Neil CM, et al. Seizures, ataxia, developmental delay and the general paediatrician: glucose transporter 1 deficiency syndrome. J Paediatr Child Health. 2006;42:263–7.

    Article  PubMed  Google Scholar 

  33. Ito Y, Oguni H, Ito S, Oguni M, Osawa M. A modified Atkins diet is promising as a treatment for glucose transporter type 1 deficiency syndrome. Dev Med Child Neurol. 2011;53(7):658–63.

    Article  PubMed  Google Scholar 

  34. Kitamura Y, Okumura A, Hayashi M, Mori H, Takahashi S, Yanagihara K, et al. Oxidative stress markers and phosphorus magnetic resonance spectroscopy in a patient with GLUT1 deficiency treated with modified Atkins diet. Brain Dev. 2012;34(5):372–5.

    Article  PubMed  Google Scholar 

  35. Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13(4):342.

    Article  PubMed  CAS  Google Scholar 

  36. Klepper J, Fischbarg J, Vera JC, Wang D, De Vivo DC. GLUT1- deficiency: barbiturates potentiate haploinsufficiency in vitro. Pediatr Res. 1999;46(6):677–83.

    Article  PubMed  CAS  Google Scholar 

  37. von Moers A, Brockmann K, Wang D, Korenke CG, Huppke P, De Vivo DC, et al. EEG features of glut-1 deficiency syndrome. Epilepsia. 2002;43(8):941–5.

    Article  Google Scholar 

  38. Cano A, Ticus I, Chabrol B. Glucose transporter type 1 (GLUT-1) deficiency. Rev Neurol (Paris). 2008;164(11):896–901.

    Article  CAS  Google Scholar 

  39. Verrotti A, D’Egidio C, Agostinelli S, Gobbi G. Glut1 deficiency: when to suspect and how to diagnose? Eur J Paediatr Neurol. 2012;16:3–9.

    Article  PubMed  CAS  Google Scholar 

  40. Anheim M, Maillart E, Vuillaumier-Barrot S, Flamand-Rouvière C, Pineau F, Ewenczyk C, et al. Excellent response to acetazolamide in a case of paroxysmal dyskinesias due to GLUT1-deficiency. J Neurol. 2011;258:316–7.

    Article  PubMed  Google Scholar 

  41. De Vivo DC, Leary L, Wang D. Glucose transporter 1 deficiency syndrome and other glycolytic defects. J Child Neurol. 2002;17 Suppl 3:S15–23.

    Google Scholar 

  42. Mochel F, DeLonlay P, Touati G, Brunengraber H, Kinman RP, Rabier D, et al. Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab. 2005;84(4):305–12.

    Article  PubMed  CAS  Google Scholar 

  43. Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, et al. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab. 2006;291(4):E860–6.

    Article  PubMed  CAS  Google Scholar 

  44. Deng S, Zhang GF, Kasumov T, Roe CR, Brunengraber H. Interrelations between C4 ketogenesis, C5 ketogenesis, and anaplerosis in the perfused rat liver. J Biol Chem. 2009;284(41):27799–807.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Borges K, Sonnewald U. Triheptanoin–a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment? Epilepsy Res. 2012;100(3):239–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Willis S, Stoll J, Sweetman L, Borges K. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis. 2010;40(3):565–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Thomas NK, Willis S, Sweetman L, Borges K. Triheptanoin in acute mouse seizure models. Epilepsy Res. 2012;99(3):312–7.

    Article  PubMed  CAS  Google Scholar 

  48. Kim TH, Borges K, Petrou S, Reid CA. Triheptanoin reduces seizure susceptibility in a syndrome-specific mouse model of generalized epilepsy. Epilepsy Res. 2013;103(1):101–5.

    Article  PubMed  CAS  Google Scholar 

  49. Veggiotti P, Burlina A, Coppola G, Cusmai R, De Giorgis V, Guerrini R, et al. The ketogenic diet for Dravet syndrome and other epileptic encephalopathies: an Italian consensus. Epilepsia. 2011;52 Suppl 2:83–9. This is an interesting review that provides a consensus statement regarding the clinical management, patient selection, counseling and follow-up of the ketogenic diet in the Italian experience.

    Article  PubMed  Google Scholar 

  50. Chambon R, Vuillaumier-Barrot S, Seta N, Wagner S, Sarret C. Partial effectiveness of acetazolamide in a mild form of GLUT1 deficiency: a pediatric observation. Mov Disord. 2013;28(12):1749–51.

    Article  PubMed  CAS  Google Scholar 

  51. Brockmann K. Towards a more palatable treatment for Glut1 deficiency syndrome. Dev Med Child Neurol. 2011;53(7):580–1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank A.I.E.F. ONLUS Foundation for its support.

Compliance with Ethics Guidelines

Conflict of Interest

This work has been supported by FONDAZIONE CARIPLO, grant n°8 2010-0759.

Pierangelo Veggiotti and Valentina De Giorgis declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Veggiotti MD.

Additional information

This article is part of the Topical Collection on Pediatric Neurology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veggiotti, P., De Giorgis, V. Dietary Treatments and New Therapeutic Perspective in GLUT1 Deficiency Syndrome. Curr Treat Options Neurol 16, 291 (2014). https://doi.org/10.1007/s11940-014-0291-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-014-0291-8

Keywords

Navigation