Skip to main content

Advertisement

Log in

Arteriovenous malformations in the brain

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Arteriovenous malformations (AVM) are a leading cause of intracerebral hemorrhage, especially among the young. Because they pose a lifelong risk of serious bleeding, definitive treatment to obliterate the AVM should be pursued in the majority of patients. Microsurgical resection of a small AVM located in the superficial or noneloquent brain achieves high cure rates with low morbidity, and is the recommended choice for such lesions. Radiosurgery with gamma knife, linear accelerator, or heavy ion beam irradiation is an alternative therapy for AVM treatments less than 3 centimeters in diameter located in brain regions where surgery is likely to produce major neurologic deficits, or for patients unable or unwilling to undergo craniotomy and resection. Cure rates are lower than with microsurgery, and obliteration of the lesion may take 2 to 3 years, during which time the patient remains at risk for hemorrhage. Because rates of recurrent hemorrhage are higher than rates of initial bleeding, radiosurgery may be a good option for patients who have not yet had an intracranial hemorrhage. Endovascular embolization as sole therapy is curative only in a small percentage of cases, but is recommended as part of a multimodal approach to reduce the size of a large AVM, and decrease bleeding risk of lesions with multiple or inaccessible feeding vessels or associated aneurysms prior to surgery or radiotherapy. Currently, treatment decisions must rely solely on Class III evidence from case series and expert opinion. Randomized clinical trials are needed to provide objective guidelines for the future management of patients with an AVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Arteriovenous Malformation Study Group: Arteriovenous malformations of the brain in adults. N Engl J Med 1999, 340:1812–1818.

    Article  Google Scholar 

  2. Al-Shahi R, Warlow C: A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain 2001, 124:1900–1926. The most comprehensive survey of incidence, prevalence, and natural history data on AVMs.

    Article  PubMed  CAS  Google Scholar 

  3. Fleetwood IG, Steinberg GK: Arteriovenous malformations. Lancet 2002, 359:863–873.

    Article  PubMed  Google Scholar 

  4. Ogilvy CS, Stieg PE, Awad I, et al.: Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 2001, 32:1458–1471. This consensus statement of the American Heart Association by a panel of experts represents the current standard care for AVM treatment.

    PubMed  CAS  Google Scholar 

  5. Jessurun GA, Kamphuis DJ, van der Zande FH, Nossent JC: Cerebral arteriovenous malformations in the Netherlands Antilles. High prevalence of hereditary hemorrhagic telangiectasia-related single and multiple cerebral arteriovenous malformations. Clin Neurol Neurosurg 1993, 95:193–198.

    Article  PubMed  CAS  Google Scholar 

  6. Brown JRD, Wiebers DO, Torner JC, O’Fallon WM: Incidence and prevalence of intracranial vascular malformations in Olmsted County, Minnesota, 1965 to 1992. Neurology 1996, 46:949–952.

    PubMed  Google Scholar 

  7. Ruíz-Sandoval JL, Cantú C, Barinagarrementeria F: Intracerebral hemorrhage in young people: analysis of risk factors, location, causes, and prognosis. Stroke 1999, 30:537–541.

    PubMed  Google Scholar 

  8. Putman CM, Chaloupka JC, Fulbright RK, et al.: Exceptional multiplicity of cerebral arteriovenous malformations associated with hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome). AJNR Am J Neuroradiol 1996, 17:1733–1742.

    PubMed  CAS  Google Scholar 

  9. Kader A, Goodrich JT, Sonstein WJ, et al.: Recurrent cerebral arteriovenous malformations after negative postoperative angiograms. J Neurosurg 1996, 85:14–18.

    PubMed  CAS  Google Scholar 

  10. Lindqvist M, Karlsson B, Guo WY, et al.: Angiographic long-term follow-up data for arteriovenous malformations previously proven to be obliterated after gamma knife radiosurgery. Neurosurgery 2000, 46:803–810.

    Article  PubMed  CAS  Google Scholar 

  11. Mast H, Young WL, Koennecke HC, et al.: Risk of spontaneous hemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet 1997, 350:1065–1068.

    Article  PubMed  CAS  Google Scholar 

  12. Miyamoto S, Hashimoto N, Nagata I, et al.: Posttreatment sequelae of palliatively treated cerebral arteriovenous malformations. Neurosurgery 2000, 46:589–595.

    Article  PubMed  CAS  Google Scholar 

  13. Spetzler RF, Martin NA: A proposed grading system for arteriovenous, malformations. J Neurosurg 1986, 65:476–483.

    PubMed  CAS  Google Scholar 

  14. Hamilton MG, Spetzler RF: The prospective application of a grading system for arteriovenous malformations. Neurosurgery 1994, 34:2–7.

    Article  PubMed  CAS  Google Scholar 

  15. Stefani MA, Porter PJ, terBrugge KG, et al.: Large and deep brain arteriovenous malformations are associated with risk of future hemorrhage. Stroke 2002, 33:1220–1224.

    Article  PubMed  Google Scholar 

  16. Piepgras DG, Sundt TM Jr, Ragoowansi AT, Stevens L: Seizure outcome in patients with surgically treated cerebral arteriovenous malformations. J Neurosurg 1993, 78:5–11.

    Article  PubMed  CAS  Google Scholar 

  17. Gerszten PC, Adelson PD, Kondziolka D, et al.: Seizure outcome in children treated for arteriovenous malformations using gamma knife. Pediatr Neurosurg 1996, 24:139–144.

    Article  PubMed  CAS  Google Scholar 

  18. Kurita H, Kawamoto S, Suzuki I, et al.: Control of epilepsy associated with cerebral arteriovenous malformations after radiosurgery. J Neurol Neurosurg Psychiatry 1998, 65:648–655.

    PubMed  CAS  Google Scholar 

  19. Viñuela F, Dion JE, Duckwiler G, et al.: Combined endovascular embolization and surgery in the management of cerebral arteriovenous malformations: experience with 101 cases. J Neurosurg 1991, 75:856–864.

    PubMed  Google Scholar 

  20. Wikholm G, Lundqvist C, Svendsen P: Embolization of cerebral arteriovenous malformations, part I: technique, morphology, and complications. Neurosurgery 1996, 39:448–459. A detailed description of one institution’s endovascular embolization treatment protocol.

    Article  PubMed  CAS  Google Scholar 

  21. Gobin YP, Laurent A, Merienne L, et al.: Treatment of brain arteriovenous malformations by embolization and radiosurgery. J Neurosurg 1996, 85:19–28.

    PubMed  CAS  Google Scholar 

  22. Sorimachi T, Koike T, Takeuchi S, et al.: Embolization of cerebral arteriovenous malformations achieved with polyvinyl alcohol particles: angiographic reappearance and complications. AJNR Am J Neuroradiol 1999, 20:1323–1328.

    PubMed  CAS  Google Scholar 

  23. Jafar JJ, Rezai AR: Acute surgical management of intracranial arteriovenous malformations. Neurosurgery 1994, 34:8–13.

    Article  PubMed  CAS  Google Scholar 

  24. Schaller C, Schramm J: Microsurgical results for small arteriovenous malformations accessible for radiosurgical or embolization treatment. Neurosurgery 1997, 40:664–672.

    Article  PubMed  CAS  Google Scholar 

  25. Pikus HJ, Beach ML, Harbaugh RE: Microsurgical treatment of arteriovenous malformations: analysis and comparison with stereotactic radiosurgery. J Neurosurg 1998, 88:641–646.

    PubMed  CAS  Google Scholar 

  26. Hartmann A, Stapf C, Hofmeister C, et al.: Determinants of neurological outcome after surgery for brain arteriovenous malformation. Stroke 2000, 31:2361–2364.

    PubMed  CAS  Google Scholar 

  27. Meisel HJ, Mansmann U, Alvarez H, et al.: Cerebral arteriovenous malformations and associated aneurysms: analysis of 305 cases from a series of 662 patients. Neurosurgery 2000, 46:793–802.

    Article  PubMed  CAS  Google Scholar 

  28. Morgan MK, Sekhon LHS, Finfer S, Grinnell V: Delayed neurological deterioration following resection of arteriovenous malformations of the brain. J Neurosurg 1999, 90:695–701.

    PubMed  CAS  Google Scholar 

  29. Alkadhi H, Kollias SS, Crelier GR, et al.: Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. AJNR Am J Neuroradiol 2000, 21:1423–1433.

    PubMed  CAS  Google Scholar 

  30. Latchaw RE, Hu X, Ugurbil K, et al.: Functional magnetic resonance imaging as a management tool for cerebral arteriovenous malformations. Neurosurgery 1995, 37:619–626.

    Article  PubMed  CAS  Google Scholar 

  31. Maldjian J, Atlas SW, Howard RS II, et al.: Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg 1996, 84:477–483.

    Article  PubMed  CAS  Google Scholar 

  32. Berman MF, Hartmann A, Mast H, et al.: Determinants of resource utilization in the treatment of brain arteriovenous malformations. AJNR Am J Neuroradiol 1999, 20:2004–2008.

    PubMed  CAS  Google Scholar 

  33. Pollock BE, Flickinger JC, Lunsford LD, et al.: Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations. Neurosurgery 1996, 38:652–661.

    Article  PubMed  CAS  Google Scholar 

  34. Friedman WA, Blatt DL, Bova FJ, et al.: The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg 1996, 84:912–919.

    PubMed  CAS  Google Scholar 

  35. Karlsson B, Lax I, Söderman M: Risk for hemorrhage during the 2-year latency period following gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys 2001, 49:1045–1051.

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz M: Stereotactic radiosurgery: comparing different technologies. CMAJ 1998, 158:625–628.

    PubMed  CAS  Google Scholar 

  37. Flickinger JC, Kondziolka D, Lunsford LD, et al.: A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 1999, 44:67–74.

    Article  PubMed  CAS  Google Scholar 

  38. Pollock BE, Lunsford LD, Kondziolka D, et al.: Patient outcomes after stereotactic radiosurgery for “operable”arteriovenous malformations. Neurosurgery 1994, 35:1–8.

    Article  PubMed  CAS  Google Scholar 

  39. Pollock BE: Stereotactic radiosurgery for arteriovenous malformations. Neurosurg Clin N Am 1999, 10:281–290.

    PubMed  CAS  Google Scholar 

  40. Wigg DR: Is there a role for fractionated radiotherapy in the treatment of arteriovenous malformations? Acta Oncol 1999, 38:979–986.

    Article  PubMed  CAS  Google Scholar 

  41. Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD: A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 1996, 36:873–879.

    Article  PubMed  CAS  Google Scholar 

  42. Konigsmaier H, de Pauli-Ferch B, Hackl A, Pendl G: The costs of radiosurgical treatment: comparison between gamma knife and linear accelerator. Acta Neurochir (Wien) 1998, 140:1101–1110.

    Article  CAS  Google Scholar 

  43. Rutigliano MJ, Lunsford LD, Kondziolka D, et al.: The cost effectiveness of stereotactic radiosurgery versus surgical resection in the treatment of solitary metastatic brain tumors. Neurosurgery 1995, 37:445–453.

    Article  PubMed  CAS  Google Scholar 

  44. Porter PJ, Shin AY, Detsky AS, et al.: Surgery versus stereotactic radiosurgery for small, operable cerebral arteriovenous malformations: a clinical and cost comparison. Neurosurgery 1997, 41:757–764.

    Article  PubMed  CAS  Google Scholar 

  45. DeMerrit JS, Pile-Spellman J, Mast H, et al.: Outcome analysis of preoperative embolization with N-butyl cyanoacrylate in cerebral arteriovenous malformations. AJNR Am J Neuroradiol 1995, 16:1801–1807.

    Google Scholar 

  46. Söderman M, Rodesch G, Karlsson B, et al.: Gamma knife outcome models as a reference standard in the embolization of cerebral arteriovenous malformations. Acta Neurochir (Wien) 2001, 143:801–810. An interesting prospective study in which patient outcomes for embolization followed by gamma knife radiosurgery were compared with those predicted from a detailed model of the results of radiation alone.

    Article  Google Scholar 

  47. Jordan JE, Marks MP, Lane B, Steinberg GK: Costeffectiveness of endovascular therapy in the surgical management of cerebral arteriovenous malformations. AJNR Am J Neuroradiol 1996, 17:247–254.

    PubMed  CAS  Google Scholar 

  48. Di Rocco C, Tamburrini G, Rollo M: Cerebral arteriovenous malformations in children. Acta Neurochir (Wien) 2000, 142:145–158.

    Article  Google Scholar 

  49. Hoh BL, Ogilvy CS, Butler WE, et al.: Multimodality treatment of nongalenic arteriovenous malformations in pediatric patients. Neurosurgery 2000, 47:346–358.

    Article  PubMed  CAS  Google Scholar 

  50. Mattle HP, Schroth G, Seiler RW: Dilemmas in the management of patients with arteriovenous malformations. J Neurol 2000, 247:917–928.

    Article  PubMed  CAS  Google Scholar 

  51. Stapf C, Mohr JP: New concepts in adult brain arteriovenous malformations. Curr Opin Neurol 2000, 13:63–67.

    Article  PubMed  CAS  Google Scholar 

  52. Joint Writing Group of the Technology Assessment Committee, American Society of Interventional and Therapeutic Neuroradiology; Joint Section on Cerebrovascular Neurosurgery, a Section of the American Association of Neurological Surgeons and Congress of Neurological Surgeons; and Section of Stroke and the Section of Interventional Neurology of the American Academy of Neurology: Reporting terminology for brain arteriovenous malformation clinical and radiographic features for use in clinical trials. Stroke 2001, 32:1430–1442.

    Google Scholar 

  53. Massoud TF, Hademenos GJ: Transvenous retrograde nidus sclerotherapy under controlled hypotension (TRENSH): a newly proposed treatment for brain arteriovenous malformations—concepts and rationale. Neurosurgery 1999, 45:351–365.

    Article  PubMed  CAS  Google Scholar 

  54. Hindman BJ, Todd MM, Gelb AW, et al.: Mild hypothermia as a protective therapy during intracranial aneurysm surgery: a randomized prospective pilot trial. Neurosurgery 1999, 44:23–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, G.D. Arteriovenous malformations in the brain. Curr Treat Options Neurol 4, 435–444 (2002). https://doi.org/10.1007/s11940-002-0011-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-002-0011-7

Keywords

Navigation