Skip to main content
Log in

Assessment of Atrial Fibrosis and Its Implications in Atrial Fibrillation and Stroke

  • Arrhythmia (R Kabra, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Cardiac magnetic resonance imaging (CMRI) can be used to accurately define atrial fibrosis burden and is increasingly available, which has led to a renaissance in our understanding of atrial fibrosis as a major component of the atrial disease substrate. The purpose of this review is to provide information on our current understanding of atrial fibrosis and its relation to atrial fibrillation (AFib) and stroke, highlight its implications in the treatment of these conditions, and discuss potential therapies for atrial fibrosis.

Recent findings

CMRI-defined atrial fibrosis has a proven utility in stratifying the response to catheter ablation for AFib and has led to recent interest in ablation strategies specifically targeting fibrotic areas. Atrial fibrosis may serve as the missing mechanistic link between AFib and embolic stroke, and ongoing studies may change treatment strategies for subsets of stroke patients. Recent animal studies suggest that atrial fibrosis may be modifiable in response to treatment of contributing risk factors such as obesity and sleep apnea.

Summary

Our understanding of atrial fibrosis and its relation to AFib and stroke is rapidly evolving. The presence of CMRI-defined atrial fibrosis may have a significant impact on the treatment paradigms for these conditions. The development and perpetuation of atrial fibrosis may be modifiable by pharmacologic and lifestyle interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Boyle PM, Del Álamo JC, Akoum N. Fibrosis, atrial fibrillation and stroke: clinical updates and emerging mechanistic models. Heart. 2021;107(2):99–105 This manuscript describes a new framework of approaching fibrosis as the nexus between atrial fibrillation and stroke and outlines clinical evidence as well as potential applications using computational modeling.

    Article  CAS  PubMed  Google Scholar 

  2. Thomas L, Abhayaratna WP. Left atrial reverse remodeling:mechanismsm evaluation, and clinical significance. JACC: Cardiovasc Imaging 2017;10(1):65-77.

  3. McGann C, Akoum N, Patel A, et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ Arrhythm Electrophysiol. 2014;7(1):23–30.

    Article  PubMed  Google Scholar 

  4. Iles LM, Ellims AH, Llewellyn H, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging. 2015;16(1):14–22.

    Article  PubMed  Google Scholar 

  5. Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5):498–506.

    Article  CAS  PubMed  Google Scholar 

  6. Benito EM, Carlosena-Remirez A, Guasch E, et al. Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility. EP Europace. 2017;19(8):1272–9.

    Article  Google Scholar 

  7. Chubb H, Karim R, Roujol S, et al. The reproducibility of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. J Cardiovasc Magn Reson. 2018;20(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54(2):230–46.

    Article  CAS  PubMed  Google Scholar 

  9. Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51(8):802–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kottkamp H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur Heart J. 2013;34(35):2731–8.

    Article  PubMed  Google Scholar 

  11. Siebermair J, Suksaranjit P, McGann CJ, et al. Atrial fibrosis in non-atrial fibrillation individuals and prediction of atrial fibrillation by use of late gadolinium enhancement magnetic resonance imaging. J Cardiovasc Electrophysiol. 2019;30(4):550–6.

    Article  PubMed  Google Scholar 

  12. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347(23):1825–33.

    Article  CAS  PubMed  Google Scholar 

  13. Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378(5):417–27.

    Article  PubMed  Google Scholar 

  14. Kirchhof P, Camm AJ, Goette A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383(14):1305–16.

    Article  PubMed  Google Scholar 

  15. Correia ETdO, Barbetta LMdS, Mesquita ET. Extent of left atrial ablation lesions and atrial fibrillation recurrence after catheter ablation - a systematic review and meta-analysis. Arquivos Brasileiros de Cardiologia. 2020;114:627–635.

  16. Khurram IM, Habibi M, Gucuk Ipek E, et al. Left atrial LGE and arrhythmia recurrence following pulmonary vein isolation for paroxysmal and persistent AF. JACC: Cardiovascular Imaging. 2016;9(2):142–148.

  17. Luetkens JA, Wolpers AC, Beiert T, et al. Cardiac magnetic resonance using late gadolinium enhancement and atrial T1 mapping predicts poor outcome in patients with atrial fibrillation after catheter ablation therapy. Sci Rep. 2018;8(1):13618.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 2017;3(5):425–35.

    Article  PubMed  Google Scholar 

  19. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation. Circulation: Arrhythmia and Electrophysiology. 2008;1(1):62–73.

  20. Zlochiver S, Muñoz V, Vikstrom KL, Taffet SM, Berenfeld O, Jalife J. Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Biophys J . 2008;95(9):4469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akoum N, Morris A, Perry D, et al. Substrate Modification is a better predictor of catheter ablation success in atrial fibrillation than pulmonary vein isolation: an LGE-MRI study. Clin Med Insights Cardiol. 2015;9:25–31.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rolf S, Kircher S, Arya A, et al. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7(5):825–33.

    Article  PubMed  Google Scholar 

  23. Yamaguchi T, Tsuchiya T, Nakahara S, et al. Efficacy of left atrial voltage-based catheter ablation of persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2016;27(9):1055–63.

    Article  PubMed  Google Scholar 

  24. Jadidi AS, Lehrmann H, Keyl C, et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol. 2016;9(3):e002962.

  25. Schreiber D, Rieger A, Moser F, Kottkamp H. Catheter ablation of atrial fibrillation with box isolation of fibrotic areas: lessons on fibrosis distribution and extent, clinical characteristics, and their impact on long-term outcome. J Cardiovasc Electrophysiol. 2017;28(9):971–83.

    Article  PubMed  Google Scholar 

  26. Kircher S, Arya A, Altmann D, et al. Individually tailored vs. standardized substrate modification during radiofrequency catheter ablation for atrial fibrillation: A randomized study. Europace. 2018;20(11):1766–1775.

  27. Bisbal F, Benito E, Teis A, et al. Magnetic resonance imaging-guided fibrosis ablation for the treatment of atrial fibrillation: the ALICIA trial. Circ Arrhythm Electrophysiol 2020;13(11):e008707.

  28. Sim I, Bishop M, O’Neill M, Williams SE. Left atrial voltage mapping: defining and targeting the atrial fibrillation substrate. J Interv Card Electrophysiol. 2019;56(3):213–27.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Herpich F, Rincon F. Management of acute ischemic stroke. Crit Care Med. 2020;48(11):1654–63.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Daccarett M, Badger TJ, Akoum N, et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol. 2011;57(7):831–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. King JB, Azadani PN, Suksaranjit P, et al. Left atrial fibrosis and risk of cerebrovascular and cardiovascular events in patients with atrial fibrillation. J Am Coll Cardiol. 2017;70(11):1311–21.

    Article  PubMed  Google Scholar 

  32. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society in collaboration with the society of thoracic surgeons. Circulation. 2019;140(2):e125–51.

    Article  Google Scholar 

  33. Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86.

    Article  CAS  PubMed  Google Scholar 

  34. Brambatti M, Connolly SJ, Gold MR, et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation. 2014;129(21):2094–9.

    Article  PubMed  Google Scholar 

  35. Daoud EG, Glotzer TV, Wyse DG, et al. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm. 2011;8(9):1416–23.

    Article  PubMed  Google Scholar 

  36. Kamel H, Okin PM, Longstreth WT Jr, Elkind MS, Soliman EZ. Atrial cardiopathy: a broadened concept of left atrial thromboembolism beyond atrial fibrillation. Future Cardiol. 2015;11(3):323–31.

    Article  CAS  PubMed  Google Scholar 

  37. Habibi M, Chrispin J, Spragg DD, et al. Utility of Cardiac MRI in Atrial Fibrillation Management. Card Electrophysiol Clin. 2020;12(2):131–9.

    Article  PubMed  Google Scholar 

  38. •• Tandon K, Tirschwell D, Longstreth WT Jr, Smith B, Akoum N. Embolic stroke of undetermined source correlates to atrial fibrosis without atrial fibrillation. Neurology. 2019;93(4):e381-7 This study was the first to describe the finding of increased atrial fibrosis in patients with embolic stroke of undetermined source in comparison to a control group of healthy volunteers.

    Article  CAS  PubMed  Google Scholar 

  39. •• Kuhnlein P, Mahnkopf C, Majersik JJ, et al. Atrial fibrosis in embolic stroke of undetermined source- A Multi-center study. Eur J Neurol. 2021;00:1–6 This study confirms the finding that patients with embolic stroke of undetermined source have a high burden of fiborsis, comparable to that seen in atrial fibrillation. Moreover, patients with embolic stroke of undetermined source had higher rates of new onset atrial fibrillationa and recurrent ischemic stroke during prospective follow up.

    Google Scholar 

  40. Hart RG, Sharma M, Mundl H, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med. 2018;378(23):2191–201.

    Article  CAS  PubMed  Google Scholar 

  41. Diener H-C, Sacco RL, Easton JD, et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med. 2019;380(20):1906–17.

    Article  CAS  PubMed  Google Scholar 

  42. Healey JS, Gladstone DJ, Swaminathan B, et al. Recurrent stroke with rivaroxaban compared with aspirin according to predictors of atrial fibrillation: secondary analysis of the NAVIGATE ESUS randomized clinical trial. JAMA Neurol. 2019;76(7):764–73.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Geisler T, Poli S, Meisner C, et al. Apixaban for treatment of embolic stroke of undetermined source (ATTICUS randomized trial): rationale and study design. Int J Stroke. 2017;12(9):985–90.

    Article  PubMed  Google Scholar 

  44. Kamel H, Longstreth WT Jr, Tirschwell DL, et al. The AtRial Cardiopathy and Antithrombotic Drugs In prevention After cryptogenic stroke randomized trial: rationale and methods. Int J Stroke. 2019;14(2):207–14.

    Article  PubMed  Google Scholar 

  45. Mangiafico V, Saberwal B, Lavalle C, et al. Impact of obesity on atrial fibrillation ablation. Arch Cardiovasc Dis. 2020;113(8–9):551–63.

    Article  PubMed  Google Scholar 

  46. Abed HS, Samuel CS, Lau DH, et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 2013;10(1):90–100.

    Article  PubMed  Google Scholar 

  47. Mahajan R, Lau DH, Brooks AG, et al. Atrial fibrillation and obesity: reverse remodeling of atrial substrate with weight reduction. JACC Clin Electrophysiol. 2021.

  48. Middeldorp ME, Pathak RK, Meredith M, et al. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study. Europace. 2018;20(12):1929–35.

    Article  PubMed  Google Scholar 

  49. Casaclang-Verzosa G, Gersh BJ, Tsang TSM. Structural and functional remodeling of the left atrium: clinical and therapeutic implications for atrial fibrillation. J Am Coll Cardiol. 2008;51(1):1–11.

    Article  PubMed  Google Scholar 

  50. Matsuyama N, Tsutsumi T, Kubota N, Nakajima T, Suzuki H, Takeyama Y. Direct action of an angiotensin II receptor blocker on angiotensin II-induced left atrial conduction delay in spontaneously hypertensive rats. Hypertens Res. 2009;32(8):721–6.

    Article  CAS  PubMed  Google Scholar 

  51. Yoon N, Cho JG, Kim KH, et al. Beneficial effects of an angiotensin-II receptor blocker on structural atrial reverse-remodeling in a rat model of ischemic heart failure. Exp Ther Med. 2013;5(4):1009–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K, Saku K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 2003;41(12):2197–204.

    Article  CAS  PubMed  Google Scholar 

  53. Yang SS, Han W, Zhou HY, et al. Effects of spironolactone on electrical and structural remodeling of atrium in congestive heart failure dogs. Chin Med J (Engl). 2008;121(1):38–42.

    Article  CAS  Google Scholar 

  54. Lee KW, Everett THt, Rahmutula D, et al. Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation. 2006;114(16):1703–1712.

  55. Yang Q, Qi X, Dang Y, Li Y, Song X, Hao X. Effects of atorvastatin on atrial remodeling in a rabbit model of atrial fibrillation produced by rapid atrial pacing. BMC Cardiovasc Disord. 2016;16(1):142.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989–1002.

    Article  CAS  PubMed  Google Scholar 

  57. Effect of dronedarone on atrial fibrosis progression and atrial fibrillation recurrence - full text view - ClinicalTrials.gov. In:2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazem Akoum MD, MS.

Ethics declarations

Conflict of Interest

Bishoy Hanna declares that he has no conflict of interest. Nazem Akoum declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This articleis part of Topical Collection on Arrhythmia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanna, B., Akoum, N. Assessment of Atrial Fibrosis and Its Implications in Atrial Fibrillation and Stroke. Curr Treat Options Cardio Med 23, 66 (2021). https://doi.org/10.1007/s11936-021-00952-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-021-00952-z

Keywords

Navigation