Skip to main content

Advertisement

Log in

Sex Differences in Cardiovascular Disease and Unique Pregnancy-Associated Risk Factors in Women

  • Pregnancy and Cardiovascular Disease (N Scott, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Cardiovascular disease is the leading cause of mortality in women. Beyond conventional cardiovascular risk factors, women additionally face sex-specific cardiovascular disease risk factors, which include a history of adverse pregnancy outcomes. Adverse pregnancy outcomes include the hypertensive disorders of pregnancy, gestational diabetes mellitus, preterm delivery, and small-for-gestational age delivery. Here, we review sex differences in cardiovascular disease with an emphasis on pregnancy-associated risk factors and discuss implications for the prevention and treatment of cardiovascular disease in women.

Recent findings

Adverse pregnancy outcomes, especially the hypertensive disorders of pregnancy, have been linked to diverse cardiovascular conditions, accelerated cardiovascular aging, and multimorbidity. Chronic hypertension appears to be a key mediator of accelerated cardiovascular disease risk in women with hypertensive disorders of pregnancy. Recent genetic analyses suggest a shared genetic predisposition between adverse cardiometabolic traits and development of hypertension in pregnancy. Mechanisms linking gestational diabetes, preterm delivery, small-for-gestational age delivery, and infertility to cardiovascular disease are less well understood.

Summary

The mechanisms linking adverse pregnancy outcomes to future cardiovascular disease remain incompletely understood. Further research is needed to better understand this relationship and the implications of adverse pregnancy outcomes for cardiovascular disease prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Appelman Y, van Rijn BB, ten Haaf ME, Boersma E, Peters SAE. Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis. 2015;241(1):211–8. https://doi.org/10.1016/j.atherosclerosis.2015.01.027.

    Article  CAS  PubMed  Google Scholar 

  2. •• Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2019;140(11):e563–e95. https://doi.org/10.1161/CIR.0000000000000677 These multi-society guidelines endorse using a history of adverse pregnancy outcomes as “risk-enhancing factor” to refine atherosclerotic cardiovasuclar disease (ASCVD) risk assessments in middle-aged women with intermediate (7.5–20%) 10-year ASCVD risk and guide allocation of statin therapy.

    Article  PubMed  Google Scholar 

  3. Bots SH, Peters SAE. Woodward M. Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Global Health. 2017;2(2). https://doi.org/10.1136/bmjgh-2017-000298.

  4. Weir HK. Heart disease and cancer deaths — trends and projections in the United States, 1969–2020. Prev Chronic Dis. 2016;13. https://doi.org/10.5888/pcd13.160211.

  5. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction. Circulation. 2010;121(4):586–613. https://doi.org/10.1161/CIRCULATIONAHA.109.192703.

    Article  PubMed  Google Scholar 

  6. World Health Organization. Global status report on noncommunicable diseases. 2010: Description of the global burden of NCDs, their risk factors and determinants http://wwwwhoint/nmh/publications/ncd_report2010/en/ Accessed 27 April 2020.

  7. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  PubMed  Google Scholar 

  8. Hauspurg A, Ying W, Hubel CA, Michos ED, Ouyang P. Adverse pregnancy outcomes and future maternal cardiovascular disease. Clin Cardiol. 2018;41(2):239–46. https://doi.org/10.1002/clc.22887.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wenger NKM. Women and coronary heart disease: a century after Herrick: understudied, underdiagnosed, and undertreated. Circulation. 2012;126(5):604–11. https://doi.org/10.1161/CIRCULATIONAHA.111.086892.

    Article  PubMed  Google Scholar 

  10. Mosca LM, Barrett-Connor E, Wenger NK. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation. 2011;124(19):2145–54. https://doi.org/10.1161/CIRCULATIONAHA.110.968792.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McSweeney JC, Pettey CM, Souder E, Rhoads S. Disparities in women’s cardiovascular health. J Obstet Gynecol Neonatal Nurs. 2011;40(3):362–71. https://doi.org/10.1111/j.1552-6909.2011.01239.x.

    Article  PubMed  Google Scholar 

  12. Zhao M, Vaartjes I, Graham I, Grobbee D, Spiering W, Klipstein-Grobusch K, et al. Sex differences in risk factor management of coronary heart disease across three regions. Heart. 2017;103(20):1587–94. https://doi.org/10.1136/heartjnl-2017-311429.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lawton JS. Sex and gender differences in coronary artery disease. Semin Thorac Cardiovasc Surg. 2011;23(2):126–30. https://doi.org/10.1053/j.semtcvs.2011.07.006.

    Article  PubMed  Google Scholar 

  14. McSweeney JC, Rosenfeld AG, Abel WM, Braun LT, Burke LE, Daugherty SL, et al. Preventing and experiencing ischemic heart disease as a woman: state of the science. Circulation. 2016;133(13):1302–31. https://doi.org/10.1161/CIR.0000000000000381.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Benjamin EJM, Virani SS, Callaway CW, Chamberlain AM, Chang ARM, Cheng SM, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12). https://doi.org/10.1161/CIR.0000000000000558.

  16. Mosca L, Mochari-Greenberger H, Dolor RJ, Newby LK, Robb KJ. Twelve-year follow-up of American women’s awareness of cardiovascular disease risk and barriers to heart health. Circ Cardiovasc Qual Outcomes. 2010;3(2):120–7. https://doi.org/10.1161/CIRCOUTCOMES.109.915538.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gulati MM. Improving the cardiovascular health of women in the nation: moving beyond the bikini boundaries. Circulation. 2017;135(6):495–8. https://doi.org/10.1161/CIRCULATIONAHA.116.025303.

    Article  PubMed  Google Scholar 

  18. De Smedt D, De Bacquer D, De Sutter J, Dallongeville J, Gevaert S, De Backer G, et al. The gender gap in risk factor control: effects of age and education on the control of cardiovascular risk factors in male and female coronary patients. The EUROASPIRE IV study by the European Society of Cardiology. Int J Cardiol. 2016;209:284–90. https://doi.org/10.1016/j.ijcard.2016.02.015.

    Article  PubMed  Google Scholar 

  19. Maric-Bilkan C, Galis ZS. Trends in NHLBI-funded research on sex differences in hypertension. Circ Res. 2016;119(5):591–5. https://doi.org/10.1161/CIRCRESAHA.116.308963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature News. 2014;509(7500):282. https://doi.org/10.1038/509282a.

    Article  Google Scholar 

  21. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165–241. https://doi.org/10.1093/eurheartj/ehy340.

    Article  PubMed  Google Scholar 

  22. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, et al. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: executive summary. J Am Coll Cardiol. 2019;73(12):1494–563. https://doi.org/10.1161/CIR.0000000000000603.

    Article  PubMed  Google Scholar 

  23. Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update. J Am Coll Cardiol. 2011;57(12):1404–23. https://doi.org/10.1016/j.jacc.2011.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  24. •• Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. J Am Coll Cardiol. 2019;73(24):e285–350. https://doi.org/10.1016/j.jacc.2018.11.003 These multi-society guidelines endorse using a history of adverse pregnancy outcomes as “risk-enhancing factor” to refine atherosclerotic cardiovasuclar disease (ASCVD) risk assessments in middle-aged women with intermediate (7.5–20%) 10-year ASCVD risk and guide allocation of statin therapy.

    Article  PubMed  Google Scholar 

  25. Hollier LM, et al. ACOG practice bulletin no. 212: pregnancy and heart disease. Obstet Gynecol. 2019;133(5):e320–56. https://doi.org/10.1097/AOG.0000000000003243.

    Article  Google Scholar 

  26. Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol. 2018;14(3):185–201. https://doi.org/10.1038/nrneph.2017.189.

    Article  PubMed  Google Scholar 

  27. Prescott E, Hippe M, Schnohr P, Hein HO, Vestbo J. Smoking and risk of myocardial infarction in women and men: longitudinal population study. BMJ. 1998;316(7137):1043. https://doi.org/10.1136/bmj.316.7137.1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huxley RR, Woodward M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet. 2011;378(9799):1297–305. https://doi.org/10.1016/S0140-6736(11)60781-2.

    Article  PubMed  Google Scholar 

  29. Peters SAE, Huxley RR, Woodward M. Smoking as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 81 cohorts, including 3 980 359 individuals and 42 401 strokes. Stroke. 2013;44(10):2821–8. https://doi.org/10.1161/STROKEAHA.113.002342.

    Article  PubMed  Google Scholar 

  30. Peters SAE, Huxley RR, Sattar N, Woodward M. Sex differences in the excess risk of cardiovascular diseases associated with type 2 diabetes: potential explanations and clinical implications. Curr Cardiovasc Risk Rep. 2015;9(7):36. https://doi.org/10.1007/s12170-015-0462-5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peters SAE, Huxley RR, Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet. 2014;383(9933):1973–80. https://doi.org/10.1016/S0140-6736(14)60040-4.

    Article  PubMed  Google Scholar 

  32. McKibben RA, Al Rifai M, Mathews LM, Michos ED. Primary prevention of atherosclerotic cardiovascular disease in women. Curr Cardiovasc Risk Rep. 2016;10(1):1. https://doi.org/10.1007/s12170-015-0480-3.

    Article  PubMed  Google Scholar 

  33. Garcia M, Mulvagh SL, Bairey Merz CN, Buring JE, Manson JE. Cardiovascular disease in women: clinical perspectives. Circ Res. 2016;118(8):1273–93. https://doi.org/10.1161/CIRCRESAHA.116.307547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332(7533):73–8. https://doi.org/10.1136/bmj.38678.389583.7C.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sharma K, Gulati M. Coronary artery disease in women: a 2013 update. Glob Heart. 2013;8(2):105–12. https://doi.org/10.1016/j.gheart.2013.02.001.

    Article  PubMed  Google Scholar 

  36. Wilson PWF, D’Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162(16):1867–72. https://doi.org/10.1001/archinte.162.16.1867.

    Article  PubMed  Google Scholar 

  37. Peters SAE, Muntner P, Woodward M. Sex differences in the prevalence of, and trends in, cardiovascular risk factors, treatment, and control in the United States, 2001 to 2016. Circulation. 2019;139(8):1025–35. https://doi.org/10.1161/CIRCULATIONAHA.118.035550.

    Article  CAS  PubMed  Google Scholar 

  38. Rosengren A, Hawken S, Ôunpuu S, Sliwa K, Zubaid M, Almahmeed WA, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):953–62. https://doi.org/10.1016/S0140-6736(04)17019-0.

    Article  PubMed  Google Scholar 

  39. Wenger NK. Female-friendly focus: 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. Clin Cardiol. 2019;42(8):706–9. https://doi.org/10.1002/clc.23218.

    Article  PubMed  PubMed Central  Google Scholar 

  40. O’Neil A, Scovelle AJ, Milner AJ, Kavanagh A. Gender/sex as a social determinant of cardiovascular risk. Circulation. 2018;137(8):854–64. https://doi.org/10.1161/CIRCULATIONAHA.117.028595.

    Article  PubMed  Google Scholar 

  41. Katzmarzyk PT, Lee I-M, Martin CK, Blair SN. Epidemiology of physical activity and exercise training in the United States. Prog Cardiovasc Dis. 2017;60(1):3–10. https://doi.org/10.1016/j.pcad.2017.01.004.

    Article  PubMed  Google Scholar 

  42. Gell NM, Wadsworth DD. How do they do it: working women meeting physical activity recommendations. Am J Health Behav. 2014;38(2):208–17. https://doi.org/10.5993/AJHB.38.2.6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lichtman JH, Leifheit EC, Safdar B, Bao H, Krumholz HM, Lorenze NP, et al. Sex differences in the presentation and perception of symptoms among young patients with myocardial infarction: evidence from the VIRGO study (Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients). Circulation. 2018;137(8):781–90. https://doi.org/10.1161/CIRCULATIONAHA.117.031650.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Berger JS, Elliott L, Gallup D, Roe M, Granger CB, Armstrong PW, et al. Sex differences in mortality following acute coronary syndromes. JAMA. 2009;302(8):874–82. https://doi.org/10.1001/jama.2009.1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarma AA, Braunwald E, Cannon CP, Guo J, Im K, Antman EM, et al. Outcomes of women compared with men after non–ST-segment elevation acute coronary syndromes. J Am Coll Cardiol. 2019;74(24):3013–22. https://doi.org/10.1016/j.jacc.2019.09.065.

    Article  CAS  PubMed  Google Scholar 

  46. Kosmidou I, Leon MB, Zhang Y, Serruys PW, von Birgelen C, Smits PC, et al. Long-term outcomes in women and men following percutaneous coronary intervention. J Am Coll Cardiol. 2020;75(14):1631–40. https://doi.org/10.1016/j.jacc.2020.01.056.

    Article  PubMed  Google Scholar 

  47. Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E, Franconi F, Gerdts E, Foryst-Ludwig A, et al. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J. 2016;37(1):24–34. https://doi.org/10.1093/eurheartj/ehv598.

    Article  CAS  PubMed  Google Scholar 

  48. Leening MJ, Ferket BS, Steyerberg EW, Kavousi M, Deckers JW, Nieboer D, et al. Sex differences in lifetime risk and first manifestation of cardiovascular disease: prospective population based cohort study. BMJ. 2014;349:g5992. https://doi.org/10.1136/bmj.g5992.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ricci B, Cenko E, Vasiljevic Z, Stankovic G, Kedev S, Kalpak O, et al. Acute coronary syndrome: the risk to young women. J Am Heart Assoc. 2017;6(12):e007519. https://doi.org/10.1161/JAHA.117.007519.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gabet A, Danchin N, Juillière Y, Olié V. Acute coronary syndrome in women: rising hospitalizations in middle-aged French women, 2004-14. Eur Heart J. 2017;38(14):1060–5. https://doi.org/10.1093/eurheartj/ehx097.

    Article  PubMed  Google Scholar 

  51. Brush JE, Krumholz HM, Greene EJ, Dreyer RP. Sex differences in symptom phenotypes among patients with acute myocardial infarction. Circulation: Cardiovascular Quality and Outcomes. 2020;13(2):e005948. https://doi.org/10.1161/CIRCOUTCOMES.119.005948.

    Article  Google Scholar 

  52. Bairey Merz CN, Shaw LJ, Reis SE, Bittner V, Kelsey SF, Olson M, et al. Insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study: part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. J Am Coll Cardiol. 2006;47(3 Supplement):S21–9. https://doi.org/10.1016/j.jacc.2004.12.084.

    Article  PubMed  Google Scholar 

  53. Saw J, Mancini GBJ, Humphries KH. Contemporary review on spontaneous coronary artery dissection. J Am Coll Cardiol. 2016;68(3):297–312. https://doi.org/10.1016/j.jacc.2017.06.053.

    Article  PubMed  Google Scholar 

  54. Ferry AV, Anand A, Strachan FE, Mooney L, Stewart SD, Marshall L, et al. Presenting symptoms in men and women diagnosed with myocardial infarction using sex-specific criteria. J Am Heart Assoc. 2019;8(17):e012307. https://doi.org/10.1161/JAHA.119.012307.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Canto JG, Rogers WJ, Goldberg RJ, Peterson ED, Wenger NK, Vaccarino V, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. J Am Med Assoc. 2012;307(8):813–22. https://doi.org/10.1001/jama.2012.199.

    Article  CAS  Google Scholar 

  56. Pope JH, Aufderheide TP, Ruthazer R, Woolard RH, Feldman JA, Beshansky JR, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med. 2000;342(16):1163–70. https://doi.org/10.1056/NEJM200004203421603.

    Article  CAS  PubMed  Google Scholar 

  57. Vaccarino V, Parsons L, Every NR, Barron HV, Krumholz HM. Sex-based differences in early mortality after myocardial infarction. N Engl J Med. 1999;341(4):217–25. https://doi.org/10.1056/NEJM199907223410401.

    Article  CAS  PubMed  Google Scholar 

  58. Vaccarino V, Horwitz RI, Meehan TP, Petrillo MK, Radford MJ, Krumholz HM. Sex differences in mortality after myocardial infarction: evidence for a sex-age interaction. Arch Intern Med. 1998;158(18):2054–62. https://doi.org/10.1001/archinte.158.18.2054.

    Article  CAS  PubMed  Google Scholar 

  59. Jacobs AK. Coronary intervention in 2009. Circulation: Cardiovascular Interventions. 2009;2(1):69–78. https://doi.org/10.1161/CIRCINTERVENTIONS.108.847954.

    Article  Google Scholar 

  60. Lloyd-Jones D, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215. https://doi.org/10.1161/CIRCULATIONAHA.109.192667.

    Article  PubMed  Google Scholar 

  61. Mehta LSM, Beckie TM, DeVon HA, Grines CL, Krumholz HMM, Johnson MNM, et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation. 2016;133(9):916–47. https://doi.org/10.1161/CIR.0000000000000351.

    Article  CAS  PubMed  Google Scholar 

  62. Anand SS, Islam S, Rosengren A, Franzosi MG, Steyn K, Yusufali AH, et al. Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J. 2008;29(7):932–40. https://doi.org/10.1093/eurheartj/ehn018.

    Article  PubMed  Google Scholar 

  63. Daubert MA, Douglas PS. Primary prevention of heart failure in women. JACC: Heart Failure. 2019;7(3):181–91. https://doi.org/10.1016/j.jchf.2019.01.011.

    Article  PubMed  Google Scholar 

  64. Dewan P, Rørth R, Jhund PS, Shen L, Raparelli V, Petrie MC, et al. Differential impact of heart failure with reduced ejection fraction on men and women. J Am Coll Cardiol. 2019;73(1):29–40. https://doi.org/10.1016/j.jacc.2018.09.081.

    Article  PubMed  Google Scholar 

  65. Honigberg MC, Lau ES, Jones AD, Coles A, Redfield MM, Lewis GD, et al. Sex differences in exercise capacity and quality of life in heart failure with preserved ejection fraction: a secondary analysis of the RELAX and NEAT-HFpEF trials. J Card Fail. 2020;26(3):276–80. https://doi.org/10.1016/j.cardfail.2020.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Regitz-Zagrosek V, Brokat S, Tschope C. Role of gender in heart failure with normal left ventricular ejection fraction. Prog Cardiovasc Dis. 2007;49(4):241–51. https://doi.org/10.1016/j.pcad.2006.08.011.

    Article  CAS  PubMed  Google Scholar 

  67. Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, et al. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(5):535–42. https://doi.org/10.1002/ejhf.67.

    Article  PubMed  Google Scholar 

  68. Beale AL, Meyer P, Marwick TH, Lam CSP, Kaye DM. Sex differences in cardiovascular pathophysiology: why women are overrepresented in heart failure with preserved ejection fraction. Circulation. 2018;138(2):198–205. https://doi.org/10.1161/CIRCULATIONAHA.118.034271.

    Article  PubMed  Google Scholar 

  69. Ji H, Kim A, Ebinger JE, Niiranen TJ, Claggett BL, Merz CNB, et al. Sex differences in blood pressure trajectories over the life course. JAMA Cardiol. 2020;5(3):19–26. https://doi.org/10.1001/jamacardio.2019.5306.

    Article  PubMed  Google Scholar 

  70. Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC: Heart Failure. 2018;6(8):701–9. https://doi.org/10.1016/j.jchf.2018.05.018.

    Article  PubMed  Google Scholar 

  71. Dewan P, Rørth R, Raparelli V, Campbell RT, Shen L, Jhund PS, et al. Sex-related differences in heart failure with preserved ejection fraction. Circ Heart Fail. 2019;12(12):e006539. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006539.

    Article  PubMed  Google Scholar 

  72. Merz AA, Cheng S. Sex differences in cardiovascular ageing. Heart. 2016 Jun;102(11):825–31. https://doi.org/10.1136/heartjnl-2015-308769.

  73. Deswal A, Bozkurt B. Comparison of morbidity in women versus men with heart failure and preserved ejection fraction. Am J Cardiol. 2006;97(8):1228–31. https://doi.org/10.1016/j.amjcard.2005.11.042.

    Article  PubMed  Google Scholar 

  74. Stolfo D, Uijl A, Vedin O, Strömberg A, Faxén UL, Rosano GMC, et al. Sex-based differences in heart failure across the ejection fraction spectrum: phenotyping, and prognostic and therapeutic implications. JACC Heart Fail. 2019;7(6):505–15. https://doi.org/10.1016/j.jchf.2019.03.011.

    Article  PubMed  Google Scholar 

  75. DeFilippis EM, Truby LK, Garan AR, Givens RC, Takeda K, Takayama H, et al. Sex-related differences in use and outcomes of left ventricular assist devices as bridge to transplantation. JACC: Heart Failure. 2019;7(3):250–7. https://doi.org/10.1016/j.jchf.2019.01.008.

    Article  PubMed  Google Scholar 

  76. Joshi AA, Lerman JB, Sajja AP, Dahiya G, Gokhale AV, Dey AK, et al. Sex-based differences in left ventricular assist device utilization. Circ Heart Fail. 2019 Sep 1;12(9):e006082. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006082.

  77. Chandrasekhar J, Dangas G, Mehran R. Valvular heart disease in women, differential remodeling, and response to new therapies. Curr Treat Options Cardio Med. 2017;19(9):74. https://doi.org/10.1007/s11936-017-0573-z.

    Article  Google Scholar 

  78. Kodali SK, Velagapudi P, Hahn RT, Abbott D, Leon MB. Valvular heart disease in patients ≥80 years of age. J Am Coll Cardiol. 2018;71(18):2058–72. https://doi.org/10.1016/j.jacc.2018.03.459.

    Article  PubMed  Google Scholar 

  79. Nguyen V, Mathieu T, Melissopoulou M, Cimadevilla C, Codogno I, Huart V, et al. Sex differences in the progression of aortic stenosis and prognostic implication: the COFRASA-GENERAC study. JACC Cardiovasc Imaging. 2016;9(4):499–501. https://doi.org/10.1016/j.jcmg.2016.02.006.

    Article  PubMed  Google Scholar 

  80. Stangl V, Baldenhofer G, Laule M, Baumann G, Stangl K. Influence of sex on outcome following transcatheter aortic valve implantation (TAVI): systematic review and meta-analysis. J Interv Cardiol. 2014;27(6):531–9. https://doi.org/10.1111/joic.12150.

    Article  PubMed  Google Scholar 

  81. Conrotto F, D’Ascenzo F, Presbitero P, Humphries KH, Webb JG, O’Connor SA, et al. Effect of gender after transcatheter aortic valve implantation: a meta-analysis. Ann Thorac Surg. 2015;99(3):809–16. https://doi.org/10.1016/j.athoracsur.2014.09.089.

    Article  PubMed  Google Scholar 

  82. O’Connor SA, Morice M-C, Gilard M, Leon MB, Webb JG, Dvir D, et al. Revisiting sex equality with transcatheter aortic valve replacement outcomes: a collaborative, patient-level meta-analysis of 11,310 patients. J Am Coll Cardiol. 2015;66(3):221–8. https://doi.org/10.1016/j.jacc.2015.05.024.

    Article  PubMed  Google Scholar 

  83. Laricchia A, Bellini B, Romano V, Khawaja S, Montorfano M, Chieffo A. Sex and ranscatheter aortic valve implantation: impact of female sex on clinical outcomes. Interv Cardiol. 2019;14(3):137–41. https://doi.org/10.15420/icr.2019.07.R1.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chieffo A, Petronio AS, Mehilli J, Chandrasekhar J, Sartori S, Lefèvre T, et al. 1-year clinical outcomes in women after transcatheter aortic valve replacement: results from the first WIN-TAVI registry. J Am Coll Cardiol Intv. 2018;11(1):1–12. https://doi.org/10.1016/j.jcin.2017.09.034.

    Article  Google Scholar 

  85. Williams M, Kodali SK, Hahn RT, Humphries KH, Nkomo VT, Cohen DJ, et al. Sex-related differences in outcomes after transcatheter or surgical aortic valve replacement in patients with severe aortic stenosis: insights from the PARTNER trial (Placement of Aortic Transcatheter Valve). J Am Coll Cardiol. 2014;63(15):1522–8. https://doi.org/10.1016/j.jacc.2014.01.036.

    Article  PubMed  Google Scholar 

  86. McNeely C, Vassileva C. Mitral valve surgery in women: another target for eradicating sex inequality. Circulation: Cardiovascular Quality & Outcomes. 2016;9(2_suppl_1):S94–6. https://doi.org/10.1161/CIRCOUTCOMES.115.002603.

    Article  Google Scholar 

  87. Grayburn PA. Sex differences in mitral regurgitation before and after mitral valve surgery. JACC Cardiovasc Imaging. 2016;9(4):397–9. https://doi.org/10.1016/j.jcmg.2016.02.013.

    Article  PubMed  Google Scholar 

  88. Mokhles MM, Siregar S, Versteegh MIM, Noyez L, van Putte B, Vonk ABA, et al. Male–female differences and survival in patients undergoing isolated mitral valve surgery: a nationwide cohort study in the Netherlands. Eur J Cardiothorac Surg. 2016;50(3):482–7. https://doi.org/10.1093/ejcts/ezw151.

    Article  PubMed  Google Scholar 

  89. Vassileva CM, McNeely C, Mishkel G, Boley T, Markwell S, Hazelrigg S. Gender differences in long-term survival of Medicare beneficiaries undergoing mitral valve operations. Ann Thorac Surg. 2013;96(4):1367–73. https://doi.org/10.1016/j.athoracsur.2013.04.055.

    Article  PubMed  Google Scholar 

  90. Seeburger J, Eifert S, Pfannmüller B, Garbade J, Vollroth M, Misfeld M, et al. Gender differences in mitral valve surgery. Thorac Cardiovasc Surg. 2012;61(01):42–6. https://doi.org/10.1055/s-0032-1331583.

    Article  PubMed  Google Scholar 

  91. Seely EW, Tsigas E, Rich-Edwards JW. Preeclampsia and future cardiovascular disease in women: how good are the data and how can we manage our patients? Semin Perinatol. 2015;39(4):276–83. https://doi.org/10.1053/j.semperi.2015.05.006.

    Article  PubMed  Google Scholar 

  92. Roberts JM, Catov JM. Pregnancy is a screening test for later life cardiovascular disease: now what? Research Recommendations. Women’s Health Issues. 2012;22(2):E123–8. https://doi.org/10.1016/j.whi.2012.01.001.

    Article  PubMed  Google Scholar 

  93. Parikh NI. Sex differences in the risk of cardiovascular disease. BMJ. 2011;343:d5526. https://doi.org/10.1136/bmj.d5526.

    Article  PubMed  Google Scholar 

  94. Staff AC. Long-term cardiovascular health after stopping pre-eclampsia. Lancet. 2019;394(10204):1120–1. https://doi.org/10.1016/S0140-6736(19)31993-2.

    Article  PubMed  Google Scholar 

  95. Fraser A, Nelson SM, Macdonald-Wallis C, Cherry L, Butler E, Sattar N, et al. Associations of pregnancy complications with calculated cardiovascular disease risk and cardiovascular risk factors in middle age. Circulation. 2012;125(11):1367–80. https://doi.org/10.1161/CIRCULATIONAHA.111.044784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. •• Garovic VD, White WM, Vaughan L, Saiki M, Parashuram S, Garcia-Valencia O, et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J Am Coll Cardiol. 2020;75(18):2323–34. https://doi.org/10.1016/j.jacc.2020.03.028 This study of women in Olmsted County, Minnesota, found that women with a history of hypertensive disorders of pregnancy accumulated diverse cardiovascular conditions and multimorbidity than unaffected women, lending support to the hypothesis that hypetensive disorders of pregnancy herald a syndrome of accelerated cardiovascular aging.

    Article  PubMed  Google Scholar 

  97. Zoet GA, Benschop L, Boersma E, Budde RPJ, Fauser BCJM, van der Graaf Y, et al. Prevalence of subclinical coronary artery disease assessed by coronary computed tomography angiography in 45- to 55-year-old women with a history of preeclampsia. Circulation. 2018;137(8):877–9. https://doi.org/10.1161/CIRCULATIONAHA.117.032695.

    Article  PubMed  Google Scholar 

  98. •• Honigberg MC, Zekavat SM, Aragam K, Klarin D, Bhatt DL, Scott NS, et al. Long-term cardiovascular risk in women with hypertension during pregnancy. J Am Coll Cardiol. 2019;74(22):2743–54. https://doi.org/10.1016/j.jacc.2019.09.052 This study of parous women in the UK Biobank found that women with a history of hypertensive disorders of pregnancy had elevated arterial stiffness decade postpartum compared to unaffected women, and that these women developed coronary artery disease, heart failure, aortic stenosis, and mitral regurgitatoin at accelerated rates. This constellation of findings generated the hypothesis that hypertensive disorders of pregnancy are associated with a syndrome of accelerated cardiovascular aging. The study additionally identified subsequent development of chronic hypertension as a key mediator between hypertensive disorders of pregnancy and future cardiovascular disease risk.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy. Hypertension. 2018;72(1):24–43. https://doi.org/10.1161/HYPERTENSIONAHA.117.10803.

    Article  CAS  Google Scholar 

  100. Ray JG, Vermeulen MJ, Schull MJ, Redelmeier DA. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet. 2005;366(9499):1797–803. https://doi.org/10.1016/S0140-6736(05)67726-4.

    Article  PubMed  Google Scholar 

  101. Bellamy L, Casas J-P, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ: British Medical Journal. 2007;335(7627):974–7. https://doi.org/10.1136/bmj.39335.385301.BE.

    Article  PubMed  Google Scholar 

  102. Wichmann JL, Takx RAP, Nunez JH, Vliegenthart R, Otani K, Litwin SE, et al. Relationship between pregnancy complications and subsequent coronary artery disease assessed by coronary computed tomographic angiography in black women. Circulation: Cardiovascular Imaging. 2019;12(7):e008754. https://doi.org/10.1161/CIRCIMAGING.118.008754.

    Article  Google Scholar 

  103. Lewey J, Levine LD, Elovitz MA, Irizarry OC, Arany Z. Importance of early diagnosis in peripartum cardiomyopathy. Hypertension. 2020;75(1):91–7. https://doi.org/10.1161/HYPERTENSIONAHA.119.13291.

    Article  CAS  PubMed  Google Scholar 

  104. Arany Z, Elkayam U. Peripartum cardiomyopathy. Circulation. 2016;133(14):1397–409. https://doi.org/10.1161/CIRCULATIONAHA.115.020491.

    Article  CAS  PubMed  Google Scholar 

  105. Azibani F, Sliwa K. Peripartum cardiomyopathy: an update. Curr Heart Fail Rep. 2018;15(5):297–306. https://doi.org/10.1007/s11897-018-0404-x.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Behrens I, Basit S, Lykke JA, Ranthe MF, Wohlfahrt J, Bundgaard H, et al. Association between hypertensive disorders of pregnancy and later risk of cardiomyopathy. J Am Med Assoc. 2016;315(10):1026–33. https://doi.org/10.1001/jama.2016.1869.

    Article  CAS  Google Scholar 

  107. Honigberg M, Riise HKR, Daltveit AK, Tell GS, et al. Heart failure in women with hypertensive disorders of pregnancy: insights from the cardiovascular disease in Norway project. Hypertension. 2020 [epub ahead of print]. https://doi.org/10.1161/HYPERTENSIONAHA.120.15654.

  108. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension. 2011;58(4):709–15. https://doi.org/10.1161/HYPERTENSIONAHA.111.176537.

    Article  CAS  PubMed  Google Scholar 

  109. Ghossein-Doha C, Hooijschuur MCE, Spaanderman MEA. Pre-eclampsia. J Am Coll Cardiol. 2018;72(1):12–6. https://doi.org/10.1002/uog.17343.

    Article  PubMed  Google Scholar 

  110. Breetveld NM, Ghossein-Doha C, van Neer J, Sengers MJJM, Geerts L, van Kuijk SMJ, et al. Decreased endothelial function and increased subclinical heart failure in women several years after pre-eclampsia. Ultrasound Obstet Gynecol. 2018;52(2):196–204. https://doi.org/10.1002/uog.17534.

    Article  CAS  PubMed  Google Scholar 

  111. den Ruijter H, Pasterkamp G, Rutten FH, Lam CSP, Chi C, Tan KH, et al. Heart failure with preserved ejection fraction in women: the Dutch Queen of Hearts program. Neth Heart J. 2015;23(2):89–93. https://doi.org/10.1007/s12471-014-0613-1.

    Article  Google Scholar 

  112. Alma LJ, Bokslag A, Maas AHEM, Franx A, Paulus WJ, de Groot CJM. Shared biomarkers between female diastolic heart failure and pre-eclampsia: a systematic review and meta-analysis. ESC Heart Failure. 2017;4(2):88–98. https://doi.org/10.1002/ehf2.12129.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lane-Cordova AD, Khan SS, Grobman WA, Greenland P, Shah SJ. Long-term cardiovascular risks associated with adverse pregnancy outcomes: JACC review topic of the week. J Am Coll Cardiol. 2019;73(16):2106–16. https://doi.org/10.1016/j.jacc.2018.12.092.

    Article  PubMed  Google Scholar 

  114. Vaught AJ, Kovell LC, Szymanski LM, Mayer SA, Seifert SM, Vaidya D, et al. Acute cardiac effects of severe pre-eclampsia. J Am Coll Cardiol. 2018;72(1):1–11. https://doi.org/10.1016/j.jacc.2018.04.048.

    Article  PubMed  Google Scholar 

  115. Scantlebury DC, Kattah AG, Weissgerber TL, Agarwal S, Mielke MM, Weaver AL, et al. Impact of a history of hypertension in pregnancy on later diagnosis of atrial fibrillation. J Am Heart Assoc. 2018;7(10):e007584. https://doi.org/10.1161/JAHA.117.007584.

    Article  PubMed  PubMed Central  Google Scholar 

  116. McDonald SD, Malinowski A, Zhou Q, Yusuf S, Devereaux PJ. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J. 2008 Nov;156(5):918–30. https://doi.org/10.1016/j.ahj.2008.06.042.

  117. Chen S-N, Cheng C-C, Tsui K-H, Tang P-L, Chern C, Huang W-C, et al. Hypertensive disorders of pregnancy and future heart failure risk: a nationwide population-based retrospective cohort study. Pregnancy Hypertens. 2018;13:110–5. https://doi.org/10.1016/j.preghy.2018.05.010.

    Article  PubMed  Google Scholar 

  118. Honigberg MC, Natarajan P. Women’s cardiovascular health after hypertensive pregnancy: the long view from labor and delivery becomes clearer. J Am Coll Cardiol. 2020;75(18):2335–7. https://doi.org/10.1016/j.jacc.2020.01.064.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Catov JM, Muldoon MF, Reis SE, Ness RB, Nguyen LN, Yamal J-M, et al. Preterm birth with placental evidence of malperfusion is associated with cardiovascular risk factors after pregnancy: a prospective cohort study. BJOG Int J Obstet Gynaecol. 2018;125(8):1009–17. https://doi.org/10.1111/1471-0528.15040.

    Article  CAS  Google Scholar 

  120. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of anti-angiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123(24):2856–69. https://doi.org/10.1161/CIRCULATIONAHA.109.853127.

    Article  PubMed  Google Scholar 

  121. Grand’Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy. Hypertension. 2016;68(6):1447–58. https://doi.org/10.1161/HYPERTENSIONAHA.116.07907.

    Article  CAS  PubMed  Google Scholar 

  122. Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. 2013;28(1):1–19. https://doi.org/10.1007/s10654-013-9762-6.

    Article  PubMed  Google Scholar 

  123. Berends AL, de Groot CJM, Sijbrands EJ, Sie MPS, Benneheij SH, Pal R, et al. Shared constitutional risks for maternal vascular-related pregnancy complications and future cardiovascular disease. Hypertension. 2008;51(4):1034–41. https://doi.org/10.1161/HYPERTENSIONAHA.107.101873.

    Article  CAS  PubMed  Google Scholar 

  124. Ness RB, Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol. 2006;195(1):40–9. https://doi.org/10.1016/j.ajog.2005.07.049.

    Article  PubMed  Google Scholar 

  125. •• Stuart JJ, Tanz LJ, Missmer SA, Rimm EB, Spiegelman D, James-Todd TM, et al. Hypertensive disorders of pregnancy and maternal cardiovascular disease risk factor development: an observational cohort study. Ann Intern Med. 2018;169(4):224. https://doi.org/10.7326/M17-2740 In women whose pregnancies were complicated by either gestational hypertension or preeclampsia, this study identified an increased risk of chronic hypertension, type 2 diabetes, and dyslipidemia that persisted for several decades post-partum. These outcomes highlight the importance of post-partum screening and identify potential interventions in reducing future risk of cardiovascular disease.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wang Z, Wang Z, Wang L, Qiu M, Wang Y, Hou X, et al. Hypertensive disorders during pregnancy and risk of type 2 diabetes in later life: a systematic review and meta-analysis. Endocrine. 2017;55(3):809–21. https://doi.org/10.1007/s12020-016-1075-6.

    Article  CAS  PubMed  Google Scholar 

  127. Callaway LK, McIntyre HD, O’Callaghan M, Williams GM, Najman JM, Lawlor DA. The association of hypertensive disorders of pregnancy with weight gain over the subsequent 21 years: findings from a prospective cohort study. Am J Epidemiol. 2007;166(4):421–8. https://doi.org/10.1093/aje/kwm099.

    Article  PubMed  Google Scholar 

  128. Mangos GJ, Spaan JJ, Pirabhahar S, Brown MA. Markers of cardiovascular disease risk after hypertension in pregnancy. J Hypertens. 2012;30(2):351–8. https://doi.org/10.1097/HJH.0b013e32834e5ac7.

    Article  CAS  PubMed  Google Scholar 

  129. Haug EB, Horn J, Markovitz AR, Fraser A, Klykken B, Dalen H, et al. Association of conventional cardiovascular risk factors with cardiovascular disease after hypertensive disorders of pregnancy: analysis of the Nord-Trøndelag Health Study. JAMA Cardiol. 2019;4(7):628–35. https://doi.org/10.1001/jamacardio.2019.1746.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Williams D. Pregnancy: a stress test for life. Curr Opin Obstet Gynecol. 2003;15(6):465–71. https://doi.org/10.1097/01.gco.0000103846.69273.ba.

    Article  PubMed  Google Scholar 

  131. Cusimano MC, Pudwell J, Roddy M, Cho C-KJ, Smith GN. The maternal health clinic: an initiative for cardiovascular risk identification in women with pregnancy-related complications. Am J Obstet Gynecol. 2014;210(5):438.e1-e9. https://doi.org/10.1016/j.ajog.2013.12.001.

    Article  Google Scholar 

  132. Kuehn BM. State of the heart for women. Circulation. 2019;139(8):1121–3. https://doi.org/10.1161/CIRCULATIONAHA.118.039372.

    Article  PubMed  Google Scholar 

  133. Park K, Wu P, Gulati M. Obstetrics and gynecological history: a missed opportunity for cardiovascular risk assessment. J Am Coll Cardiol Case Rep. 2020;2(1):161–3. https://doi.org/10.1016/j.jaccas.2019.11.035.

    Article  Google Scholar 

  134. Honigberg MC, Chaffin M, Aragam K, et al. Genetic variation in cardiometabolic traits and medication targets and the risk of hypertensive disorders of pregnancy. Circulation. 2020;412:711–3. https://doi.org/10.1161/CIRCULATIONAHA.120.047936.

    Article  CAS  Google Scholar 

  135. Bytautiene E, Bulayeva N, Bhat G, Li L, Rosenblatt KP, Saade GR. Long-term alterations in maternal plasma proteome after sFlt1–induced preeclampsia in mice. Am J Obstet Gynecol. 2013;208(5):388.e1-e10. https://doi.org/10.1016/j.ajog.2013.01.042.

    Article  CAS  Google Scholar 

  136. Melchiorre K, Thilaganathan B, Giorgione V, Ridder A, Memmo A, Khalil A. Hypertensive disorders of pregnancy and future cardiovascular health. Front Cardiovasc Med. 2020;7:59. https://doi.org/10.3389/fcvm.2020.00059.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Shah BR, Retnakaran R, Booth GL. Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care. 2008;31(8):1668–9. https://doi.org/10.2337/dc08-0706.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62(6):905–14. https://doi.org/10.1007/s00125-019-4840-2.

    Article  PubMed  Google Scholar 

  139. Retnakaran R, Shah BR. Role of type 2 diabetes in determining retinal, renal, and cardiovascular outcomes in women with previous gestational diabetes mellitus. Diabetes Care. 2017;40(1):101–8. https://doi.org/10.2337/dc16-1400.

    Article  CAS  PubMed  Google Scholar 

  140. Gunderson EP, Chiang V, Pletcher MJ, Jacobs DR, Quesenberry CP, Sidney S, et al. History of gestational diabetes mellitus and future risk of atherosclerosis in mid-life: the coronary artery risk development in young adults study. J Am Heart Assoc. 2014;3(2):e000490. https://doi.org/10.1161/JAHA.113.000490.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Harreiter J, Dovjak G, Kautzky-Willer A. Gestational diabetes mellitus and cardiovascular risk after pregnancy. Womens Health. 2014;10(1):91–108. https://doi.org/10.2217/WHE.13.69.

    Article  CAS  Google Scholar 

  142. Vrachnis N, Augoulea A, Iliodromiti Z, Lambrinoudaki I, Sifakis S, Creatsas G. Previous gestational diabetes mellitus and markers of cardiovascular risk. Int J Endocrinol. 2012. https://doi.org/10.1155/2012/458610.10.1155/2012/458610.

  143. Heitritter SM, Solomon CG, Mitchell GF, Skali-Ounis N, Seely EW. Subclinical inflammation and vascular dysfunction in women with previous gestational diabetes mellitus. J Clin Endocrinol Metab. 2005;90(7):3983–8. https://doi.org/10.1210/jc.2004-2494.

    Article  CAS  PubMed  Google Scholar 

  144. Bo S, Valpreda S, Menato G, Bardelli C, Botto C, Gambino R, et al. Should we consider gestational diabetes a vascular risk factor? Atherosclerosis. 2007;194(2):e72–9. https://doi.org/10.1016/j.atherosclerosis.2006.09.017.

    Article  CAS  PubMed  Google Scholar 

  145. Davenport MH, Goswami R, Shoemaker JK, Mottola MF. Influence of hyperglycemia during and after pregnancy on postpartum vascular function. Am J Phys Regul Integr Comp Phys. 2012;302(6):R768–75. https://doi.org/10.1152/ajpregu.00115.2011.

    Article  CAS  Google Scholar 

  146. Appiah D, Schreiner PJ, Gunderson EP, Konety SH, Jacobs DR, Nwabuo CC, et al. Association of gestational diabetes mellitus with left ventricular structure and function: the CARDIA study. Diabetes Care. 2016;39(3):400–7. https://doi.org/10.2337/dc15-1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Retnakaran R. The insulin-like growth factor axis: a new player in gestational diabetes mellitus? Diabetes. 2016;65(11):3246–8. https://doi.org/10.2337/dbi16-0048.

    Article  CAS  PubMed  Google Scholar 

  148. Robbins CL, Hutchings Y, Dietz PM, Kuklina EV, Callaghan WM. History of preterm birth and subsequent cardiovascular disease: a systematic review. Am J Obstet Gynecol. 2014;210(4):285–97. https://doi.org/10.1016/j.ajog.2013.09.020.

    Article  PubMed  Google Scholar 

  149. Minissian MB, Kilpatrick S, Eastwood J-A, Robbins WA, Accortt EE, Wei J, et al. Association of spontaneous preterm delivery and future maternal cardiovascular disease. Circulation. 2018;137(8):865–71. https://doi.org/10.1161/CIRCULATIONAHA.117.031403.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Bonamy A-KE, Parikh NIM, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation. 2011;124(25):2839–46. https://doi.org/10.1161/CIRCULATIONAHA.111.034884.

    Article  PubMed  Google Scholar 

  151. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129 290 births. Lancet. 2001;357(9273):2002–6. https://doi.org/10.1016/S0140-6736(00)05112-6.

    Article  CAS  PubMed  Google Scholar 

  152. •• Tanz LJM, Stuart JJ, Williams PL, Rimm EBS, Missmer SAS, Rexrode KMM, et al. Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women. Circulation. 2017;135(6):578–89. https://doi.org/10.1161/CIRCULATIONAHA.116.025954 This study identified preterm delivery as an independent predictor of future cardiovascular disease.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ. 2001;323(7323):1213–7. https://doi.org/10.1136/bmj.323.7323.1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Catov JM, Wu CS, Olsen J, Sutton-Tyrrell K, Li J, Nohr EA. Early or recurrent preterm birth and maternal cardiovascular disease risk. Ann Epidemiol. 2010;20(8):604–9. https://doi.org/10.1016/j.annepidem.2010.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Davey Smith G, Hyppönen E, Power C, Lawlor DA. Offspring birth weight and parental mortality: prospective observational study and meta-analysis. Am J Epidemiol. 2007;166(2):160–9. https://doi.org/10.1093/aje/kwm054.

    Article  PubMed  Google Scholar 

  156. Catov JM, Newman AB, Roberts JM, Sutton-Tyrrell KC, Kelsey SF, Harris T, et al. Association between infant birth weight and maternal cardiovascular risk factors in the health, aging, and body composition study. Ann Epidemiol. 2007;17(1):36–43. https://doi.org/10.1016/j.annepidem.2006.02.007.

    Article  PubMed  Google Scholar 

  157. Sentilhes L, Sénat M-V, Ancel P-Y, Azria E, Benoist G, Blanc J, et al. Prevention of spontaneous preterm birth: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). Eur J Obstet Gynecol Reprod Biol. 2017;210:217–24. https://doi.org/10.1016/j.ejogrb.2016.12.035.

    Article  PubMed  Google Scholar 

  158. • Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and future cardiovascular health. Circulation: Cardiovascular Quality and Outcomes. 2017;10(2):e003497. https://doi.org/10.1161/CIRCOUTCOMES.116.003497 Large meta-analysis evaluating the association between preeclampsia and future cardiovascular disease. The twenty-two studies analyzed showed that preeclampsia is associated with a 4-fold increase in future risk of heart failure, and 2-fold risk of coronary artery disease, stroke, and increased mortality due to cardiovascular and coronary artery disease. These result highlight the importance of close ongoing monitoring for women whose pregnancies have been complicated by preeclampsia.

    Article  Google Scholar 

  159. Benschop L, Schalekamp-Timmermans S, Broere-Brown ZA, Roeters van Lennep JE, Jaddoe VWV, Roos-Hesselink JW, et al. Placental growth factor as an indicator of maternal cardiovascular risk after pregnancy. Circulation. 2019;139(14):1698–709. https://doi.org/10.1161/CIRCULATIONAHA.118.036632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Coolman M, Timmermans S, de Groot CJM, Russcher H, Lindemans J, Hofman A, et al. Angiogenic and fibrinolytic factors in blood during the first half of pregnancy and adverse pregnancy outcomes. Obstet Gynecol. 2012;119(6):1190–200. https://doi.org/10.1097/AOG.0b013e318256187f.

    Article  PubMed  Google Scholar 

  161. Aasa KL, Zavan B, Luna RL, Wong PG, Ventura NM, Tse MY, et al. Placental growth factor influences maternal cardiovascular adaptation to pregnancy in mice. Biology of Reproduction. 2015;92(2). https://doi.org/10.1095/biolreprod.114.124677.

  162. Parikh NI, Jeppson RP, Berger JS, Eaton CB, Kroenke CH, LeBlanc ES, et al. Reproductive risk factors and coronary heart disease in the women’s health initiative observational study. Circulation. 2016;133(22):2149–58. https://doi.org/10.1161/CIRCULATIONAHA.115.017854.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Parker DR, Lu B, Sands-Lincoln M, Kroenke CH, Lee CC, O’Sullivan M, et al. Risk of cardiovascular disease among postmenopausal women with prior pregnancy loss: the women’s health initiative. Ann Fam Med. 2014;12(4):302–9. https://doi.org/10.1370/afm.1668.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wagner MM, Beshay MM, Rooijakkers S, Hermes W, Jukema JW, Le Cessie S, et al. Increased cardiovascular disease risk in women with a history of recurrent miscarriage. Acta Obstet Gynecol Scand. 2018;97(10):1192–9. https://doi.org/10.1111/aogs.13392.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Asgharvahedi F, Gholizadeh L, Siabani S. The risk of cardiovascular disease in women with a history of miscarriage and/or stillbirth. Health Care Women Int. 2019;40(10):1117–31. https://doi.org/10.1080/07399332.2019.1566332.

    Article  PubMed  Google Scholar 

  166. Mahalingaiah S, Sun F, Cheng JJ, Chow ET, Lunetta KL, Murabito JM. Cardiovascular risk factors among women with self-reported infertility. Fertil Res Pract. 2017;3. https://doi.org/10.1186/s40738-017-0034-0.

  167. Wild RA. Polycystic ovary syndrome: a risk for coronary artery disease? Am J Obstet Gynecol. 2002;186(1):35–43. https://doi.org/10.1067/mob.2002.119180.

    Article  PubMed  Google Scholar 

  168. Li W, Ruan W, Lu Z, Wang D. Parity and risk of maternal cardiovascular disease: a dose–response meta-analysis of cohort studies. Eur J Prev Cardiolog. 2019;26(6):592–602. https://doi.org/10.1177/2047487318818265.

    Article  Google Scholar 

  169. Robertson L, Wu O, Greer I. Thrombophilia and adverse pregnancy outcome. Current Opinion in Obstetrics & Gynecology. 2004;16(6):453–8. https://doi.org/10.1097/00001703-200412000-00003.

    Article  Google Scholar 

  170. Grundy E, Tomassini C. Fertility history and health in later life: a record linkage study in England and Wales. Soc Sci Med. 2005;61(1):217–28. https://doi.org/10.1016/j.socscimed.2004.11.046.

    Article  PubMed  Google Scholar 

  171. Lawlor DA, Emberson JR, Ebrahim S, Whincup PH, Wannamethee SG, Walker M, et al. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Circulation. 2003;107(9):1260–4. https://doi.org/10.1161/01.CIR.0000053441.43495.1A.

    Article  PubMed  Google Scholar 

  172. Ness RB, Harris T, Cobb J, Flegal KM, Kelsey JL, Balanger A, et al. Number of pregnancies and the subsequent risk of cardiovascular disease. N Engl J Med. 1993;328(21):1528–33. https://doi.org/10.1056/NEJM199305273282104.

    Article  CAS  PubMed  Google Scholar 

  173. Oliver-Williams C, Vladutiu CJ, Loehr LR, Rosamond WD, Stuebe AM. The association between parity and subsequent cardiovascular disease in women: the atherosclerosis risk in communities study. J Women’s Health. 2019;28(5):721–7. https://doi.org/10.1089/jwh.2018.7161.

    Article  Google Scholar 

  174. Koski-Rahikkala H, Pouta A, Pietiläinen K, Hartikainen A. Does parity affect mortality among parous women? J Epidemiol Community Health. 2006;60(11):968–73. https://doi.org/10.1136/jech.2005.044735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chang H, Odongua N, Ohrr H, Sull J, Nam C. Reproductive risk factors for cardiovascular disease mortality among postmenopausal women in Korea: the Kangwha Cohort Study, 1985-2005. Menopause. 2011;18(11):1205–12. https://doi.org/10.1097/gme.0b013e31821adb43.

    Article  PubMed  Google Scholar 

  176. Jacobsen BK, Knutsen SF, Oda K, Fraser GE. Parity and total, ischemic heart disease and stroke mortality. The Adventist Health Study, 1976–1988. Eur J Epidemiol. 2011;26(9):711–8. https://doi.org/10.1007/s10654-011-9598-x.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Lv H, Wu H, Yin J, Qian J, Ge J. Parity and cardiovascular disease mortality: a dose-response meta-analysis of cohort studies. Sci Rep. 2015;5(1):1–9. https://doi.org/10.1038/srep13411.

    Article  CAS  Google Scholar 

  178. Keskin M, Avşar Ş, Hayıroğlu Mİ, Keskin T, Börklü EB, Kaya A, et al. Relation of the number of parity to left ventricular diastolic function in pregnancy. Am J Cardiol. 2017;120(1):154–9. https://doi.org/10.1016/j.amjcard.2017.03.244.

    Article  PubMed  Google Scholar 

  179. Parikh NI, Cnattingius S, Dickman PW, Mittleman MA, Ludvigsson JF, Ingelsson E. Parity and risk of later-life maternal cardiovascular disease. Am Heart J. 2010;159(2):215–21. https://doi.org/10.1016/j.ahj.2009.11.017.

    Article  PubMed  Google Scholar 

  180. Saarelainen H, Valtonen P, Punnonen K, Laitinen T, Raitakari OT, Juonala M, et al. Flow mediated vasodilation and circulating concentrations of high sensitive C-reactive protein, interleukin-6 and tumor necrosis factor-alpha in normal pregnancy--the Cardiovascular Risk in Young Finns Study. Clin Physiol Funct Imaging. 2009;29(5):347–52. https://doi.org/10.1111/j.1475-097X.2009.00877.x.

    Article  CAS  PubMed  Google Scholar 

  181. Gunderson EP, Chiang V, Lewis CE, Catov J, Quesenberry CP, Sidney S, et al. Long-term blood pressure changes measured from before to after pregnancy relative to nonparous women. Obstet Gynecol. 2008;112(6):1294–302. https://doi.org/10.1097/AOG.0b013e31818da09b.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gunderson EP, Lewis CE, Wei GS, Whitmer RA, Quesenberry CP, Sidney S. Lactation and changes in maternal metabolic risk factors. Obstet Gynecol. 2007;109(3):729–38. https://doi.org/10.1097/01.AOG.0000252831.06695.03.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mankuta D, Elami-Suzin M, Elhayani A, Vinker S. Lipid profile in consecutive pregnancies. Lipids Health Dis. 2010;9:58. https://doi.org/10.1186/1476-511X-9-58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nicholson WK, Asao K, Brancati F, Coresh J, Pankow JS, Powe NR. Parity and risk of type 2 diabetes: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2006;29(11):2349–54. https://doi.org/10.2337/dc06-0825.

    Article  PubMed  Google Scholar 

  185. Li P, Shan Z, Zhou L, Xie M, Bao W, Zhang Y, et al. Mechanisms in endocrinology: parity and risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Endocrinol. 2016;175(5):R231–45. https://doi.org/10.1530/EJE-16-0321.

    Article  CAS  PubMed  Google Scholar 

  186. Sanghavi M, Kulinski J, Ayers CR, Nelson D, Stewart R, Parikh N, et al. Association between number of live births and markers of subclinical atherosclerosis: the Dallas Heart Study. Eur J Prev Cardiol. 2016;23(4):391–9. https://doi.org/10.1177/2047487315571891.

    Article  PubMed  Google Scholar 

  187. Dior UP, Hochner H, Friedlander Y, Calderon-Margalit R, Jaffe D, Burger A, et al. Association between number of children and mortality of mothers: results of a 37-year follow-up study. Ann Epidemiol. 2013;23(1):13–8. https://doi.org/10.1016/j.annepidem.2012.10.005.

    Article  PubMed  Google Scholar 

  188. Peters SA, Woodward M. Women’s reproductive factors and incident cardiovascular disease in the UK Biobank. Heart. 2018;104(13):1069–75. https://doi.org/10.1136/heartjnl-2017-312289.

    Article  CAS  PubMed  Google Scholar 

  189. Jaffe DH, Neumark YD, Eisenbach Z, Manor O. Parity-related mortality: shape of association among middle-aged and elderly men and women. Eur J Epidemiol. 2009;24(1):9–16. https://doi.org/10.1007/s10654-008-9310-y.

    Article  PubMed  Google Scholar 

  190. Hardy R, Lawlor DA, Black S, Wadsworth MEJ, Kuh D. Number of children and coronary heart disease risk factors in men and women from a British birth cohort. BJOG. 2007;114(6):721–30. https://doi.org/10.1111/j.1471-0528.2007.01324.x.

    Article  CAS  PubMed  Google Scholar 

  191. Smith GN, Pudwell J, Roddy M. The maternal health clinic: a new window of opportunity for early heart disease risk screening and intervention for women with pregnancy complications. J Obstet Gynaecol Can. 2013;35(9):831–9. https://doi.org/10.1016/S1701-2163(15)30841-0.

    Article  PubMed  Google Scholar 

  192. ACOG. Low-dose aspirin use during pregnancy. 2018;132(1):e44-e52. https://doi.org/10.1097/AOG.0000000000002708.

  193. LeFevre ML. Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;161(11):819–26. https://doi.org/10.7326/M14-1884.

    Article  PubMed  Google Scholar 

  194. Timpka S, Stuart JJ, Tanz LJ, Rimm EB, Franks PW, Rich-Edwards JW. Lifestyle in progression from hypertensive disorders of pregnancy to chronic hypertension in Nurses’ Health Study II: observational cohort study. BMJ. 2017;358. https://doi.org/10.1136/bmj.j3024.

  195. Smith GN, Louis JM, Saade GR. Pregnancy and the postpartum period as an opportunity for cardiovascular risk identification and management. Obstet Gynecol. 2019;134(4):851–62. https://doi.org/10.1097/AOG.0000000000003363.

    Article  PubMed  Google Scholar 

  196. Gifford K, Walls J, Ranji U, Salganicoff A. Medicaid coverage of pregnancy and perinatal benefits: results from a state survey. The Henry J. Kaiser Family Foundation. 2017. https://www.kff.org/report-section/medicaid-coverage-of-pregnancy-and-perinatal-benefits-introduction/. Accessed 5 May 2020.

  197. NCQA. Prenatal and postpartum care (PPC). https://www.ncqa.org/hedis/measures/prenatal-and-postpartum-care-ppc/. Accessed 5 May 2020.

  198. Park K, Wu P, Gulati M. Obstetrics and gynecological history. JACC: Case Reports. 2020;2(1):161–3. https://doi.org/10.1016/j.jaccas.2019.11.035.

    Article  Google Scholar 

  199. ACOG Practice Bulletin No. 190: gestational diabetes mellitus. Obstet Gynecol. 2018;131(2):e49–64. https://doi.org/10.1097/AOG.0000000000002501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Honigberg MD, MPP.

Ethics declarations

Conflict of Interest

Michael C. Honigberg reports grants from U.S. NHLBI (T32HL094301-07) during the conduct of the study. Anna C. O’Kelly declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pregnancy and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Kelly, A.C., Honigberg, M.C. Sex Differences in Cardiovascular Disease and Unique Pregnancy-Associated Risk Factors in Women. Curr Treat Options Cardio Med 22, 58 (2020). https://doi.org/10.1007/s11936-020-00860-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00860-8

Keywords

Navigation