Skip to main content

Advertisement

Log in

Possible Role of Dysbiosis of the Gut Microbiome in SLE

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The resident gut microbiota serves as a double-edged sword that aids the host in multiple ways to preserve a healthy equilibrium and serve as early companions and boosters for the gradual evolution of our immune defensive layers; nevertheless, the perturbation of the symbiotic resident intestinal communities has a profound impact on autoimmunity induction, particularly in systemic lupus erythematosus (SLE). Herein, we seek to critically evaluate the microbiome research in SLE with a focus on intestinal dysbiosis.

Recent Findings

SLE is a complex and heterogeneous disorder with self-attack due to loss of tolerance, and there is aberrant excessive immune system activation. There is mounting evidence suggesting that intestinal flora disturbances may accelerate the formation and progression of SLE, presumably through a variety of mechanisms, including intestinal barrier dysfunction and leaky gut, molecular mimicry, bystander activation, epitope spreading, gender bias, and biofilms.

Summary

Gut microbiome plays a critical role in SLE pathogenesis, and additional studies are warranted to properly define the impact of gut microbiome in SLE, which can eventually lead to new and potentially safer management approaches for this debilitating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med. 2020;172(11):ITC81–96. https://doi.org/10.7326/aitc202006020.

    Article  PubMed  Google Scholar 

  2. Durcan L, O’Dwyer T, Petri M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet. 2019;393(10188):2332–43. https://doi.org/10.1016/s0140-6736(19)30237-5.

    Article  PubMed  Google Scholar 

  3. Agmon-Levin N, Mosca M, Petri M, Shoenfeld Y. Systemic lupus erythematosus one disease or many? Autoimmun Rev. 2012;11(8):593–5. https://doi.org/10.1016/j.autrev.2011.10.020.

    Article  CAS  PubMed  Google Scholar 

  4. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nature Reviews Disease Primers. 2016;2. https://doi.org/10.1038/nrdp.2016.39.

  5. Bengtsson AA, Rönnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31(3):415–28. https://doi.org/10.1016/j.berh.2017.10.003.

    Article  PubMed  Google Scholar 

  6. Silverman GJ. The microbiome in SLE pathogenesis. Nat Rev Rheumatol. 2019;15(2):72–4. https://doi.org/10.1038/s41584-018-0152-z.

    Article  PubMed  Google Scholar 

  7. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21(6):605–14. https://doi.org/10.1038/s41590-020-0677-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsokos GC, Lo MS, Reis PC, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716–30. https://doi.org/10.1038/nrrheum.2016.186.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang LS, Qing PY, Yang H, Wu YK, Liu Y, Luo YB. Gut microbiome and metabolites in systemic lupus erythematosus: link, mechanisms and intervention. Frontiers in Immunology. 2021;12. https://doi.org/10.3389/fimmu.2021.686501.

  10. Borchers AT, Keen CL, Shoenfeld Y, Gershwin ME. Surviving the butterfly and the wolf: mortality trends in systemic lupus erythematosus. Autoimmun Rev. 2004;3(6):423–53. https://doi.org/10.1016/j.autrev.2004.04.002.

    Article  PubMed  Google Scholar 

  11. Bernatsky S, Boivin JF, Joseph L, Manzi S, Ginzler E, Gladman DD, et al. Mortality in systemic lupus erythematosus. Arthritis Rheum. 2006;54(8):2550–7. https://doi.org/10.1002/art.21955.

    Article  CAS  PubMed  Google Scholar 

  12. Jorge AM, Lu N, Zhang YQ, Rai SK, Choi HK. Unchanging premature mortality trends in systemic lupus erythematosus: a general population-based study (1999–2014). Rheumatology. 2018;57(2):337–44. https://doi.org/10.1093/rheumatology/kex412.

    Article  PubMed  Google Scholar 

  13. Xiang ST, Qu YQ, Qian SH, Wang RY, Wang Y, Jin YB, et al. Association between systemic lupus erythematosus and disruption of gut microbiota: a meta-analysis. Lupus Sci Med. 2022;9(1):e000599. https://doi.org/10.1136/lupus-2021-000599.

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195(1):74–85. https://doi.org/10.1111/cei.13158.

    Article  CAS  PubMed  Google Scholar 

  15. Saadat YR, Hejazian M, Bastami M, Khatibi SMH, Ardalan M, Vahed SZ. The role of microbiota in the pathogenesis of lupus: dose it impact lupus nephritis? Pharmacol Res. 2019;139:191–8. https://doi.org/10.1016/j.phrs.2018.11.023.

    Article  CAS  Google Scholar 

  16. Yaigoub H, Fath N, Tirichen H, Wu CX, Li RS, Li YF. Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: what is new in therapeutic approaches? Clinical Immunol. 2022;244:109109. https://doi.org/10.1016/j.clim.2022.109109.

    Article  CAS  Google Scholar 

  17. Zhang HS, Liao XF, Sparks JB. Luo XM Dynamics of gut microbiota in autoimmune lupus applied and environmental microbiology. Appl Environ Microbiol. 2014;80(24):7551–60. https://doi.org/10.1128/aem.02676-14. The intestinal dysbiosis in lupus was reported for the first time in a murine model.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim JW, Kwok SK, Choe JY, Park SH. Recent advances in our understanding of the link between the intestinal microbiota and systemic lupus erythematosus. Int J Mol Sci. 2019;20(19):4871. https://doi.org/10.3390/ijms20194871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silverman GJ, Azzouz DF, Alekseyenko AV. Systemic lupus erythematosus and dysbiosis in the microbiome: cause or effect or both? Curr Opin Immunol. 2019;61:80–5. https://doi.org/10.1016/j.coi.2019.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neuman H, Koren O. The gut microbiota: a possible factor influencing systemic lupus erythematosus. Curr Opin Rheumatol. 2017;29(4):374–7. https://doi.org/10.1097/bor.0000000000000395.

    Article  CAS  PubMed  Google Scholar 

  21. Hevia A, Milani C, Lopez P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. Mbio. 2014;5(5). https://doi.org/10.1128/mBio.01548-14. For the first time, next-generation sequencing approaches are used to characterize intestinal dysbiosis linked to SLE.

  22. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9. https://doi.org/10.1126/science.1124234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23. https://doi.org/10.1038/nri2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-U70. https://doi.org/10.1038/nature08821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473–93. https://doi.org/10.1007/s00018-018-2943-4.

    Article  CAS  PubMed  Google Scholar 

  26. Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2012;489(7415):250–6. https://doi.org/10.1038/nature11553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Handelsman J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004;68(4):669. https://doi.org/10.1128/mmbr.68.4.669-685.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30. https://doi.org/10.1038/nature11550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31(1):107–33. https://doi.org/10.1146/annurev.mi.31.100177.000543.

    Article  CAS  PubMed  Google Scholar 

  30. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478–85. https://doi.org/10.1038/nri1373.

    Article  CAS  PubMed  Google Scholar 

  31. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40. https://doi.org/10.1016/j.cell.2016.01.013.

    Article  CAS  PubMed  Google Scholar 

  32. Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35. https://doi.org/10.1038/nri3430.

    Article  CAS  PubMed  Google Scholar 

  33. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20. https://doi.org/10.1126/science.1104816.

    Article  CAS  PubMed  Google Scholar 

  34. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577–89. https://doi.org/10.1038/nrgastro.2012.156.

    Article  CAS  PubMed  Google Scholar 

  35. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69. https://doi.org/10.1038/nri2710.

    Article  CAS  PubMed  Google Scholar 

  36. Rosser EC, Mauri C. A clinical update on the significance of the gut microbiota in systemic autoimmunity. J Autoimmun. 2016;74:85–93. https://doi.org/10.1016/j.jaut.2016.06.009.

    Article  CAS  PubMed  Google Scholar 

  37. Biedermann L, Rogler G. The intestinal microbiota: its role in health and disease. Eur J Pediatr. 2015;174(2):151–67. https://doi.org/10.1007/s00431-014-2476-2.

    Article  CAS  PubMed  Google Scholar 

  38. Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics-Targets & Therapy. 2011;5:71–86. https://doi.org/10.2147/btt.S19099.

    Article  Google Scholar 

  39. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89. https://doi.org/10.1038/nm.4185.

    Article  CAS  PubMed  Google Scholar 

  40. Lange K, Buerger M, Stallmach A, Bruns T. Effects of antibiotics on gut microbiota. Dig Dis. 2016;34(3):260–8. https://doi.org/10.1159/000443360.

    Article  PubMed  Google Scholar 

  41. Macia L, Nanan R, Hosseini-Beheshti E, Grau GE. Host- and microbiota-derived extracellular vesicles, immune function, and disease development. Int J Mol Sci. 2020;21(1):107. https://doi.org/10.3390/ijms21010107.

    Article  CAS  Google Scholar 

  42. Rosenbaum JT, Silverman GJ. The microbiome and systemic lupus erythematosus. N Engl J Med. 2018;378(23):2236–7. https://doi.org/10.1056/NEJMcibr1804368.

    Article  PubMed  Google Scholar 

  43. Shamriz O, Mizrahi H, Werbner M, Shoenfeld Y, Avni O, Koren O. Microbiota at the crossroads of autoimmunity. Autoimmun Rev. 2016;15(9):859–69. https://doi.org/10.1016/j.autrev.2016.07.012.

    Article  CAS  PubMed  Google Scholar 

  44. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803. https://doi.org/10.3748/wjg.v21.i29.8787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41. https://doi.org/10.1016/j.cell.2014.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung HC, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149(7):1578–93. https://doi.org/10.1016/j.cell.2012.04.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99. https://doi.org/10.1016/j.cell.2014.09.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tezuka H, Abe Y, Asano J, Sato T, Liu JJ, Iwata M, et al. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity. 2011;34(2):247–57. https://doi.org/10.1016/j.immuni.2011.02.002.

    Article  CAS  PubMed  Google Scholar 

  49. Sterlin D, Fadlallah J, Slack E, Gorochov G. The antibody/microbiota interface in health and disease. Mucosal Immunol. 2020;13(1):3–11. https://doi.org/10.1038/s41385-019-0192-y.

    Article  CAS  PubMed  Google Scholar 

  50. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32. https://doi.org/10.1038/nri.2017.7.

    Article  CAS  PubMed  Google Scholar 

  51. Olesen SW, Alm EJ. Dysbiosis is not an answer. Nat Microbiol. 2016;1(12):16228. https://doi.org/10.1038/nmicrobiol.2016.228.

    Article  CAS  PubMed  Google Scholar 

  52. Christovich A, Luo XM. Gut microbiota, leaky gut, and autoimmune diseases. Frontiers in Immunology. 2022;13. https://doi.org/10.3389/fimmu.2022.946248.

  53. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70. https://doi.org/10.1126/science.1240527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592. https://doi.org/10.1126/science.aah3648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96. https://doi.org/10.1161/circresaha.117.309715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang ZN, Zhao YZ. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9(5):416–31. https://doi.org/10.1007/s13238-018-0549-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boulange CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine. 2016;8. https://doi.org/10.1186/s13073-016-0303-2.

  58. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-U7. https://doi.org/10.1038/nature07540.

    Article  CAS  PubMed  Google Scholar 

  59. Barlow GM, Yu A, Mathur R. Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract. 2015;30(6):787–97. https://doi.org/10.1177/0884533615609896.

    Article  CAS  PubMed  Google Scholar 

  60. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015;17(5):592–602. https://doi.org/10.1016/j.chom.2015.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fujimura KE, Sitarik AR, Haystad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–91. https://doi.org/10.1038/nm.4176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic hiv infection. J Infect Dis. 2015;211(1):19–27. https://doi.org/10.1093/infdis/jiu409.

    Article  CAS  PubMed  Google Scholar 

  63. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis. 2018;63(4):1337–46. https://doi.org/10.3233/jad-180176.

    Article  CAS  PubMed  Google Scholar 

  64. Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37(5):984–95. https://doi.org/10.1016/j.clinthera.2015.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ozen S, Lutz HL, Rivera VM, Reiff A, Batu ED, Anderson E, et al. Microbiome is not linked to clinical disease severity of familial Mediterranean fever in an international cohort of children. Clin Exp Rheumatol. 2021;39(5):102–8. https://doi.org/10.55563/clinexprheumatol/olvbyd.

    Article  PubMed  Google Scholar 

  66. Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114(40):10713–8. https://doi.org/10.1073/pnas.1711235114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports. 2016;6. https://doi.org/10.1038/srep28484.

  68. Cao Y, Oh J, Xue M, Huh WJ, Wang J, Gonzalez-Hernandez JA, et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science. 2022;378(6618):eabm3233. https://doi.org/10.1126/science.abm3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser H, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305. https://doi.org/10.1038/s41564-018-0306-4.

    Article  CAS  PubMed  Google Scholar 

  70. Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. Bmc Medicine. 2013;11. https://doi.org/10.1186/1741-7015-11-46.

  71. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583. https://doi.org/10.1038/s41586-018-0617-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2. https://doi.org/10.7554/eLife.01202.

  73. Zhang X, Zhang DY, Jia HJ, Feng Q, Wang DH, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. https://doi.org/10.1038/nm.3914.

    Article  CAS  PubMed  Google Scholar 

  74. Ruff WE, Dehner C, Kim WJ, Pagovich O, Aguiar CL, Yu AT, et al. Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity. Cell Host Microbe. 2019;26(1):100-13 e8. https://doi.org/10.1016/j.chom.2019.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N, Rovin BH, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 2019;78(7):947–56. https://doi.org/10.1136/annrheumdis-2018-214856.

    Article  CAS  PubMed  Google Scholar 

  76. Lin L, Zhang JQ. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. Bmc Immunology. 2017;18. https://doi.org/10.1186/s12865-016-0187-3.

  77. Posadas-Romero C, Torres-Tamayo M, Zamora-Gonzalez J, Aguilar-Herrera BE, Posadas-Sanchez R, Cardoso-Saldana G, et al. High insulin levels and increased low-density lipoprotein oxidizability in pediatric patients with systemic lupus erythematosus. Arthritis Rheum. 2004;50(1):160–5. https://doi.org/10.1002/art.11472.

    Article  CAS  PubMed  Google Scholar 

  78. Yan B, Huang J, Zhang C, Hu X, Gao M, Shi A, et al. Serum metabolomic profiling in patients with systemic lupus erythematosus by GC/MS. Mod Rheumatol. 2016;26(6):914–22. https://doi.org/10.3109/14397595.2016.1158895.

    Article  CAS  PubMed  Google Scholar 

  79. Wu TF, Xie C, Han J, Ye YJ, Weiel J, Li Q, et al. Metabolic disturbances associated with systemic lupus erythematosus. Plos One. 2012;7(6). https://doi.org/10.1371/journal.pone.0037210.

  80. Borba EF, Bonfa E. Dyslipoproteinemias in systemic lupus erythematosus: influence of disease, activity, and anticardiolipin antibodies. Lupus. 1997;6(6):533–9. https://doi.org/10.1177/096120339700600610.

    Article  CAS  PubMed  Google Scholar 

  81. He JQ, Chan TL, Hong XP, Zheng FP, Zhu CX, Yin LH, et al. Microbiome and metabolome analyses reveal the disruption of lipid metabolism in systemic lupus erythematosus. Frontiers in Immunology. 2020;11. https://doi.org/10.3389/fimmu.2020.01703.

  82. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5. https://doi.org/10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic T<sub>reg</sub> cell homeostasiS. Science. 2013;341(6145):569–73. https://doi.org/10.1126/science.1241165.

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez-Carrio J, Lopez P, Sanchez B, Gonzalez S, Gueimonde M, Margolles A, et al. Intestinal dysbiosis is associated with altered short-chain fatty acids and serum-free fatty acids in systemic lupus erythematosus. Frontiers in Immunology. 2017;8. https://doi.org/10.3389/fimmu.2017.00023.

  85. Choi S-C, Brown J, Gong M, Ge Y, Zadeh M, Li W, et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Trans Med. 2020;12(551):eaax2220. https://doi.org/10.1126/scitranslmed.aax2220.

    Article  CAS  Google Scholar 

  86. He Z, Shao T, Li H, Xie Z, Wen C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog. 2016;8:64. https://doi.org/10.1186/s13099-016-0146-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med. 2018;10(434). https://doi.org/10.1126/scitranslmed.aan2306. This study suggested that Ro60 ortholog-producing commensal species may initiate and also maintain autoimmunity in lupus in genetically predisposed individuals via a molecular mimicry mechanism.

  88. Li Y, Wang HF, Li X, Li HX, Zhang Q, Zhou HW, et al. Disordered intestinal microbes are associated with the activity of systemic lupus erythematosus. Clin Sci. 2019;133(7):821–38. https://doi.org/10.1042/cs20180841.

    Article  CAS  Google Scholar 

  89. Zhang SX, Wang J, Chen JW, Zhang MX, Zhang YF, Hu FY, et al. The level of peripheral regulatory T cells is linked to changes in gut commensal microflora in patients with systemic lupus erythematosus. Ann Rheum Dis. 2021;80(11):e177. https://doi.org/10.1136/annrheumdis-2019-216504.

    Article  PubMed  Google Scholar 

  90. van der Meulen TA, Harmsen HJM, Vila AV, Kurilshikov A, Liefers SC, Zhernakova A, et al. Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus. J Autoimmun. 2019;97:77–87. https://doi.org/10.1016/j.jaut.2018.10.009.

    Article  PubMed  Google Scholar 

  91. Guo M, Wang H, Xu S, Zhuang Y, An J, Su C, et al. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes. 2020;11(6):1758–73. https://doi.org/10.1080/19490976.2020.1768644.

    Article  PubMed  PubMed Central  Google Scholar 

  92. López P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072. https://doi.org/10.1038/srep24072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gerges MA, Esmaeel NE, Makram WK, Sharaf DM, Gebriel MG. Altered profile of fecal microbiota in newly diagnosed systemic lupus erythematosus Egyptian Patients. Int J Microbiol. 2021;2021:9934533. https://doi.org/10.1155/2021/9934533.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Toumi E, Goutorbe B, Plauzolles A, Bonnet M, Mezouar S, Militello M, et al. Gut microbiota in systemic lupus erythematosus patients and lupus mouse model: a cross species comparative analysis for biomarker discovery. Front Immunol. 2022;13:943241. https://doi.org/10.3389/fimmu.2022.943241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol. 2018;84(4). https://doi.org/10.1128/aem.02288-17.

  96. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5). https://doi.org/10.3390/nu12051474.

  97. Man SM, Kaakoush NO, Mitchell HM. The role of bacteria and pattern-recognition receptors in Crohn’s disease. Nat Rev Gastroenterol Hepatol. 2011;8(3):152–68. https://doi.org/10.1038/nrgastro.2011.3.

    Article  PubMed  Google Scholar 

  98. Wei F, Xu HF, Yan CX, Rong CL, Liu BY, Zhou HZ. Changes of intestinal flora in patients with systemic lupus erythematosus in northeast China. Plos One. 2019;14(3). https://doi.org/10.1371/journal.pone.0213063.

  99. Bellocchi C, Fernández-Ochoa Á, Montanelli G, Vigone B, Santaniello A, Quirantes-Piné R, et al. Identification of a shared microbiomic and metabolomic profile in systemic autoimmune diseases. J Clin Med. 2019;8(9). https://doi.org/10.3390/jcm8091291.

  100. Wen M, Liu T, Zhao M, Dang X, Feng S, Ding X, et al. Correlation analysis between gut microbiota and metabolites in children with systemic lupus erythematosus. J Immunol Res. 2021;2021:5579608. https://doi.org/10.1155/2021/5579608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zegarra-Ruiz DF, El Beidaq A, Iñiguez AJ, Di Ricco ML, Vieira SM, Ruff WE, et al. A diet-sensitive commensal lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe. 2019;25(1):113–276. https://doi.org/10.1016/j.chom.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

  102. Bankole A, Luo X, Husen Z. A comparative analysis of gut microbiota between systemic lupus erythematosus patients and non-autoimmune controls a single centrecenter cohort experience. Lupus Sci Med. 2017;4(Suppl 1):A155–6. https://doi.org/10.1136/lupus-2017-000215.354.

    Article  Google Scholar 

  103. Chen BD, Jia XM, Xu JY, Zhao LD, Ji JY, Wu BX, et al. An autoimmunogenic and proinflammatory profile defined by the gut microbiota of patients with untreated systemic lupus erythematosus. Arthritis Rheumatol. 2021;73(2):232–43. https://doi.org/10.1002/art.41511. This research study offers comprehensive insights into the microbiota composition of individuals with untreated SLE by examining the functional characteristics of the microbiota and the identification of peptides that mimic autoantigens.

    Article  CAS  PubMed  Google Scholar 

  104. Bunker JJ, Drees C, Watson AR, Plunkett CH, Nagler CR, Schneewind O, et al. B cell superantigens in the human intestinal microbiota. Sci Transl Med. 2019;11(507). https://doi.org/10.1126/scitranslmed.aau9356.

  105. Pan Q, Guo F, Huang Y, Li A, Chen S, Chen J, et al. Gut microbiota dysbiosis in systemic lupus erythematosus: novel insights into mechanisms and promising therapeutic strategies. Front Immunol. 2021;12:799788. https://doi.org/10.3389/fimmu.2021.799788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rojo D, Hevia A, Bargiela R, López P, Cuervo A, González S, et al. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep. 2015;5:8310. https://doi.org/10.1038/srep08310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma YYZ, Guo RR, Sun YD, Li X, He L, Li Z, et al. Lupus gut microbiota transplants cause autoimmunity and inflammation. Clin Immunol. 2021;233:108892. https://doi.org/10.1016/j.clim.2021.108892.

    Article  CAS  PubMed  Google Scholar 

  108. Tomofuji Y, Maeda Y, Oguro-Igashira E, Kishikawa T, Yamamoto K, Sonehara K, et al. Metagenome-wide association study revealed disease-specific landscape of the gut microbiome of systemic lupus erythematosus in Japanese. Ann Rheum Dis. 2021;80(12):1575–83. https://doi.org/10.1136/annrheumdis-2021-220687.

    Article  CAS  PubMed  Google Scholar 

  109. Tomofuji Y, Kishikawa T, Maeda Y, Ogawa K, Nii T, Okuno T, et al. Whole gut virome analysis of 476 Japanese revealed a link between phage and autoimmune disease. Ann Rheum Dis. 2022;81(2):278–88. https://doi.org/10.1136/annrheumdis-2021-221267.

    Article  PubMed  Google Scholar 

  110. Mu Q, Zhang H, Liao X, Lin K, Liu H, Edwards MR, et al. Control of lupus nephritis by changes of gut microbiota. Microbiome. 2017;5(1):73. https://doi.org/10.1186/s40168-017-0300-8.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med. 2020;12(551). https://doi.org/10.1126/scitranslmed.aax2220.

  112. Ma Y, Xu X, Li M, Cai J, Wei Q, Niu H. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus. Mol Med. 2019;25(1):35. https://doi.org/10.1186/s10020-019-0102-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science. 2018;359(6380):1156–61. https://doi.org/10.1126/science.aar7201.

    Article  CAS  PubMed  Google Scholar 

  114. López P, Sánchez B, Margolles A, Suárez A. Intestinal dysbiosis in systemic lupus erythematosus: cause or consequence? Curr Opin Rheumatol. 2016;28(5):515–22. https://doi.org/10.1097/bor.0000000000000309.

    Article  PubMed  Google Scholar 

  115. Chen YF, Lin J, Xiao LL, Zhang X, Zhao LD, Wang M, et al. Gut microbiota in systemic lupus erythematosus: a fuse and a solution. J Autoimmun. 2022;132:102867. https://doi.org/10.1016/j.jaut.2022.102867.

    Article  CAS  PubMed  Google Scholar 

  116. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1–9. https://doi.org/10.1038/s12276-018-0126-x.

    Article  CAS  PubMed  Google Scholar 

  117. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68(8):1516–26. https://doi.org/10.1136/gutjnl-2019-318427.

    Article  CAS  PubMed  Google Scholar 

  118. Charoensappakit A, Sae-khow K, Leelahavanichkul A. Gut barrier damage and gut translocation of pathogen molecules in lupus, an impact of innate immunity (macrophages and neutrophils) in autoimmune disease. Int J Mol Sci. 2022;23(15):8223. https://doi.org/10.3390/ijms23158223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Toral M, Robles-Vera I, Romero M, de la Visitación N, Sánchez M, O’Valle F, et al. Lactobacillus fermentum CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus. FASEB J. 2019;33(9):10005–18. https://doi.org/10.1096/fj.201900545RR.

    Article  CAS  PubMed  Google Scholar 

  120. Silverman GJ, Deng J, Azzouz DF. Sex-dependent Lupus Blautia (Ruminococcus) gnavus strain induction of zonulin-mediated intestinal permeability and autoimmunity. Frontiers in Immunology. 2022;13. https://doi.org/10.3389/fimmu.2022.897971.

  121. Mu QH, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. frontiers in immunology. 2017;8. https://doi.org/10.3389/fimmu.2017.00598.

  122. Haga HJ, Brun JG, Berntzen HB, Cervera R, Khamashta M, Hughes GRV. Calprotectin in patients with systemic lupus-erythematosus - relation to clinical and laboratory parameters of disease-activity. Lupus. 1993;2(1):47–50. https://doi.org/10.1177/096120339300200108.

    Article  CAS  PubMed  Google Scholar 

  123. Gisbert JP, Bermejo F, Perez-Calle JL, Taxonera C, Vera I, McNicholl AG, et al. Fecal Calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm Bowel Dis. 2009;15(8):1190–8. https://doi.org/10.1002/ibd.20933.

    Article  PubMed  Google Scholar 

  124. Liu B, Yang Y, Dai J, Medzhitov R, Freudenberg MA, Zhang PL, et al. TLR4 up-regulation at protein or gene level is pathogenic for lupus-like autoimmune disease. J Immunol. 2006;177(10):6880–8. https://doi.org/10.4049/jimmunol.177.10.6880.

    Article  CAS  PubMed  Google Scholar 

  125. Lee TP, Tang SJ, Wu MF, Song YC, Yu CL, Sun KH. Transgenic overexpression of anti-double-stranded DNA autoantibody and activation of Toll-like receptor 4 in mice induce severe systemic lupus erythematosus syndromes. J Autoimmun. 2010;35(4):358–67. https://doi.org/10.1016/j.jaut.2010.07.007.

    Article  CAS  PubMed  Google Scholar 

  126. Nockher WA, Wigand R, Schoeppe W, Scherberich JE. Elevated levels of soluble cd14 in serum of patients with systemic lupus-erythematosus. Clin Exp Immunol. 1994;96(1):15–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mu QH, Zhang HS, Luo XM. SLE: Another autoimmune disorder influenced by microbes and diet? Frontiers in Immunology. 2015;6. https://doi.org/10.3389/fimmu.2015.00608.

  128. Shi L, Zhang Z, Yu AM, Wang W, Wei Z, Akhter E, et al. The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS One. 2014;9(5):e93846. https://doi.org/10.1371/journal.pone.0093846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Thim-uam A, Surawut S, Issara-Amphorn J, Jaroonwitchawan T, Hiengrach P, Chatthanathon P, et al. Leaky-gut enhanced lupus progression in the Fc gamma receptor-IIb deficient and pristane-induced mouse models of lupus. Scientific Reports. 2020;10(1). https://doi.org/10.1038/s41598-019-57275-0.

  130. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4):e1251384. https://doi.org/10.1080/21688370.2016.1251384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Blank M, Barzilai O, Shoenfeld Y. Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol. 2007;32(1):111–8. https://doi.org/10.1007/BF02686087.

    Article  PubMed  Google Scholar 

  132. Shoenfeld Y, Vilner Y, Coates AR, Rauch J, Lavie G, Shaul D, et al. Monoclonal anti-tuberculosis antibodies react with DNA, and monoclonal anti-DNA autoantibodies react with Mycobacterium tuberculosis. Clin Exp Immunol. 1986;66(2):255–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cervera R, Piette JC, Font J, Khamashta MA, Cervera R, Piette JC, et al. Antiphospholipid syndrome - Clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum. 2002;46(4):1019–27. https://doi.org/10.1002/art.10187.

    Article  PubMed  Google Scholar 

  134. James JA, Robertson JM. Lupus and Epstein-Barr. Curr Opin Rheumatol. 2012;24(4):383–8. https://doi.org/10.1097/BOR.0b013e3283535801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vanderlugt CJ, Miller SD. Epitope spreading. Curr Opin Immunol. 1996;8(6):831–6. https://doi.org/10.1016/s0952-7915(96)80012-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2002;2(2):85–95. https://doi.org/10.1038/nri724.

    Article  CAS  PubMed  Google Scholar 

  137. Deshmukh US, Lewis JE, Gaskin F, Kannapell CC, Waters ST, Lou YH, et al. Immune responses to Ro60 and its peptides in mice. I. The nature of the immunogen and endogenous autoantigen determine the specificities of the induced autoantibodies. J Exp Med. 1999;189(3):531–40. https://doi.org/10.1084/jem.189.3.531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 2006;39(1):63–70. https://doi.org/10.1080/08916930500484849.

    Article  CAS  PubMed  Google Scholar 

  139. Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun. 2019;103:102301. https://doi.org/10.1016/j.jaut.2019.06.012.

    Article  CAS  PubMed  Google Scholar 

  140. Lee H-G, Cho M-Z, Choi J-M. Bystander CD4+ T cells: crossroads between innate and adaptive immunity. Exp Mol Med. 2020;52(8):1255–63. https://doi.org/10.1038/s12276-020-00486-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tough DF, Sun SQ, Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS). J Exp Med. 1997;185(12):2089–94. https://doi.org/10.1084/jem.185.12.2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zandman-Goddard G, Peeva E, Shoenfeld Y. Gender and autoimmunity. Autoimmun Rev. 2007;6(6):366–72. https://doi.org/10.1016/j.autrev.2006.10.001.

    Article  CAS  PubMed  Google Scholar 

  143. Peeva E, Zouali M. Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol Lett. 2005;101(2):123–43. https://doi.org/10.1016/j.imlet.2005.05.014.

    Article  CAS  PubMed  Google Scholar 

  144. Grimaldi CM, Hill L, Xu X, Peeva E, Diamond B. Hormonal modulation of B cell development and repertoire selection. Mol Immunol. 2005;42(7):811–20. https://doi.org/10.1016/j.molimm.2004.05.014.

    Article  CAS  PubMed  Google Scholar 

  145. Hughes GC, Choubey D. Modulation of autoimmune rheumatic diseases by oestrogen and progesterone. Nat Rev Rheumatol. 2014;10(12):740–51. https://doi.org/10.1038/nrrheum.2014.144.

    Article  CAS  PubMed  Google Scholar 

  146. Johnson BM, Gaudreau MC, Gudi R, Brown R, Gilkeson G, Vasu C. Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice. J Autoimmun. 2020;108:102420. https://doi.org/10.1016/j.jaut.2020.102420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mu Q, Cabana-Puig X, Mao J, Swartwout B, Abdelhamid L, Cecere TE, et al. Pregnancy and lactation interfere with the response of autoimmunity to modulation of gut microbiota. Microbiome. 2019;7(1):105. https://doi.org/10.1186/s40168-019-0720-8.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Edwards MR, Dai R, Heid B, Cecere TE, Khan D, Mu Q, et al. Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice. Int Immunol. 2017;29(6):263–76. https://doi.org/10.1093/intimm/dxx033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11(3):217–21. https://doi.org/10.1016/S0924-8579(99)00018-7.

    Article  CAS  PubMed  Google Scholar 

  150. Gallo PM, Rapsinski GJ, Wilson RP, Oppong GO, Sriram U, Goulian M, et al. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity. Immunity. 2015;42(6):1171–84. https://doi.org/10.1016/j.immuni.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Hande Canpinar’s kind feedback on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seza Ozen.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests

S.O. has received consultancy fees form Novartis and SOBI, both unrelated to the presented work. F.N.C.K. declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalayci, F.N.C., Ozen, S. Possible Role of Dysbiosis of the Gut Microbiome in SLE. Curr Rheumatol Rep 25, 247–258 (2023). https://doi.org/10.1007/s11926-023-01115-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-023-01115-8

Keywords

Navigation