Skip to main content

Advertisement

Log in

Recent Updates in the Immunopathology of Type 3 Immunity-Mediated Enthesitis

  • Spondyloarthritis (M Khan, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Enthesitis is a cardinal feature of spondyloarthritis (SpA). Despite increasing available treatments, challenges remain in adequately controlling inflammation and subsequent new bone formation (NBF) in entheses; thus, a better understanding of the immunopathogenesis is warranted.

Recent Findings

Increasing evidence has identified immune cells playing key roles in enthesitis such as γδ T cells and group 3 innate lymphoid cells (ILC3), possibly with site-specific regulatory systems. The presence of T cells producing interleukin (IL)-17 independent of IL-23 in human spinal entheses was recently reported, which may corroborate the discrepancy between recent clinical trials and pre-clinical studies. In addition, the contribution of myeloid cells has also been focused in both human and pre-clinical SpA models. Moreover, not only the IL-23/IL-17 signaling, but other key type 3 immunity mediators, such as IL-22 and granulocyte-macrophage colony-stimulating factor (GM-CSF), have been reported as pivotal cytokines in inflammation and NBF of entheses.

Summary

Immune cells demonstrating distinct features orchestrate entheses, leading to the complex landscape of enthesitis. However, recent advances in understanding the immunopathogenesis may provide new therapeutic targets and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schett G, Lories RJ, D’Agostino M-A, Elewaut D, Kirkham B, Soriano ER, et al. Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol. 2017;13:731–41.

    Article  CAS  PubMed  Google Scholar 

  2. Vaquero-Picado A, Barco R, Antuña SA. Lateral epicondylitis of the elbow. EFORT Open Rev. 2016;1:391–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S. The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum. 2004;50:3306–13.

    Article  CAS  PubMed  Google Scholar 

  4. Watad A, Rowe H, Russell T, et al (2020) Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-217309. This study shows that conventional CD4+ and CD8+ T cells exist in human anxial entheses and have an ability to produce IL-17A and TNF.

  5. Cuthbert RJ, Watad A, Fragkakis EM, et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann Rheum Dis. 2019;78:1559 LP–1565 This study provides the first evidence of IL-17 producing γδ T cells independent of IL-23 in human axial entheses, which may be the reason for the ineffectiveness of IL-23 monoclonal antibodies in patients with ankylosing spondylitis.

    Article  Google Scholar 

  6. Cuthbert RJ, Fragkakis EM, Dunsmuir R, Li Z, Coles M, Marzo-Ortega H, et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol (HobokenNJ). 2017;69:1816–22.

    Article  CAS  Google Scholar 

  7. Bridgewood C, Watad A, Russell T, et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann Rheum Dis. 2019;78:929–33 This study demonstrates that IL-23 is produced by CD14+ myeloid cells in human axial entheses, which highlights the importance of locally produced IL-23 in the pathogenesis of axial spondyloarthritis.

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura A, Talukdar A, Nakamura S, Pathan E, Haroon N. Bone formation in axial spondyloarthritis: is disease modification possible? Best Pract Res Clin Rheumatol. 2019;33:101491.

    Article  PubMed  Google Scholar 

  9. Jacques P, Lambrecht S, Verheugen E, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73:437–45.

    Article  PubMed  Google Scholar 

  10. Cambre I, Gaublomme D, Schryvers N, Lambrecht S, Lories R, Venken K, et al. Running promotes chronicity of arthritis by local modulation of complement activators and impairing T regulatory feedback loops. Ann Rheum Dis. 2019;78:787–95.

    Article  CAS  PubMed  Google Scholar 

  11. Kroon F, Landewé R, Dougados M, van der Heijde D. Continuous NSAID use reverts the effects of inflammation on radiographic progression in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71:1623–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sieper J. New treatment targets for axial spondyloarthritis. Rheumatology (Oxford). 2016;55:ii38–42.

    Article  Google Scholar 

  13. Sherlock JP, Joyce-Shaikh B, Turner SP, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–76.

    Article  CAS  PubMed  Google Scholar 

  14. Baeten D, Østergaard M, Wei JC-C, et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis. 2018;77:1295–302.

    Article  CAS  PubMed  Google Scholar 

  15. Dougados M, Baeten D. Spondyloarthritis. Lancet (London, England). 2011;377:2127–37.

    Article  Google Scholar 

  16. Ball J. Enthesopathy of rheumatoid and ankylosing spondylitis. Ann Rheum Dis. 1971;30:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGonagle D, Gibbon W, Emery P. Classification of inflammatory arthritis by enthesitis. Lancet (London, England). 1998;352:1137–40.

    Article  CAS  Google Scholar 

  18. Haroon M, Winchester R, Giles JT, Heffernan E, FitzGerald O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann Rheum Dis. 2016;75:155–62.

    Article  CAS  PubMed  Google Scholar 

  19. Tinazzi I, McGonagle D, Aydin SZ, Chessa D, Marchetta A, Macchioni P. “Deep Koebner” phenomenon of the flexor tendon-associated accessory pulleys as a novel factor in tenosynovitis and dactylitis in psoriatic arthritis. Ann Rheum Dis. 2018;77:922–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gracey E, Dumas E, Yerushalmi M, Qaiyum Z, Inman RD, Elewaut D. The ties that bind: skin, gut and spondyloarthritis. Curr Opin Rheumatol. 2019;31:62–9.

    Article  PubMed  Google Scholar 

  21. Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. J Anat. 1986;149:89–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hems T, Tillmann B. Tendon entheses of the human masticatory muscles. Anat Embryol (Berl). 2000;202:201–8.

    Article  CAS  Google Scholar 

  23. McGonagle D, Aydin SZ, Tan AL. The synovio-entheseal complex and its role in tendon and capsular associated inflammation. J Rheumatol Suppl. 2012;89:11–4.

    Article  PubMed  Google Scholar 

  24. Gracey E, Hromadova D, Lim M, et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J Clin Invest. 2020. https://doi.org/10.1172/JCI126567.

  25. Pedersen SJ, Maksymowych WP. The pathogenesis of ankylosing spondylitis: an update. Curr Rheumatol Rep. 2019;21:58.

    Article  PubMed  Google Scholar 

  26. Cortes A, Hadler J, Pointon JP, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45:730–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reinhardt A, Yevsa T, Worbs T, Lienenklaus S, Sandrock I, Oberdörfer L, et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol (HobokenNJ). 2016;68:2476–86.

    Article  CAS  Google Scholar 

  28. Shichita T, Hasegawa E, Kimura A, et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med. 2012;18:911–7.

    Article  CAS  PubMed  Google Scholar 

  29. Aggarwal S, Ghilardi N, Xie M-H, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278:1910–4.

    Article  CAS  PubMed  Google Scholar 

  30. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  CAS  PubMed  Google Scholar 

  31. Valmori D, Raffin C, Raimbaud I, Ayyoub M. Human RORγt+ TH17 cells preferentially differentiate from naive FOXP3+Treg in the presence of lineage-specific polarizing factors. Proc Natl Acad Sci U S A. 2010;107:19402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E, et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol. 2008;9:650–7.

    Article  CAS  PubMed  Google Scholar 

  33. Yawalkar N, Tscharner GG, Hunger RE, Hassan AS. Increased expression of IL-12p70 and IL-23 by multiple dendritic cell and macrophage subsets in plaque psoriasis. J Dermatol Sci. 2009;54:99–105.

    Article  CAS  PubMed  Google Scholar 

  34. Uhlig HH, McKenzie BS, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 2006;25:309–18.

    Article  CAS  PubMed  Google Scholar 

  35. Kerschbaumer A, Smolen JS, Dougados M, de Wit M, Primdahl J, McInnes I, et al. Pharmacological treatment of psoriatic arthritis: a systematic literature research for the 2019 update of the EULAR recommendations for the management of psoriatic arthritis. Ann Rheum Dis. 2020;79:778–86.

    Article  CAS  PubMed  Google Scholar 

  36. Feagan BG, Panés J, Ferrante M, et al. Risankizumab in patients with moderate to severe Crohn’s disease: an open-label extension study. Lancet Gastroenterol Hepatol. 2018;3:671–80.

    Article  PubMed  Google Scholar 

  37. McInnes IB, Kavanaugh A, Gottlieb AB, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet (London, England). 2013;382:780–9.

    Article  CAS  Google Scholar 

  38. Rehaume LM, Matigian N, Mehdi AM, Lachner N, Bowerman KL, Daly J, et al. IL-23 favours outgrowth of spondyloarthritis-associated pathobionts and suppresses host support for homeostatic microbiota. Ann Rheum Dis. 2019;78:494–503.

    Article  CAS  PubMed  Google Scholar 

  39. Ciccia F, Bombardieri M, Principato A, et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60:955–65.

    Article  CAS  PubMed  Google Scholar 

  40. Ciccia F, Accardo-Palumbo A, Rizzo A, Guggino G, Raimondo S, Giardina A, et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis. 2014;73:1566–74.

    Article  CAS  PubMed  Google Scholar 

  41. Deodhar A, Gensler LS, Sieper J, et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol (Hoboken, NJ). 2019;71:258–70.

    Article  CAS  Google Scholar 

  42. Yoshiga Y, Goto D, Segawa S, Ohnishi Y, Matsumoto I, Ito S, et al. Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int J Mol Med. 2008;22:369–74.

    CAS  PubMed  Google Scholar 

  43. Gracey E, Qaiyum Z, Almaghlouth I, et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann Rheum Dis. 2016;75:2124–32.

    Article  CAS  PubMed  Google Scholar 

  44. Benham H, Rehaume LM, Hasnain SZ, et al. Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol (Hoboken NJ). 2014;66:1755–67.

    Article  CAS  Google Scholar 

  45. Chen S, Manning C, van Tok M, Maeda Y, Montoro D, Kim J, et al. Interleukin-17D, a cytokine derived from stromal cells, attenuates joint inflammation [abstract]. Arthritis Rheum. 2020;72:supple10.

    Google Scholar 

  46. Taams LS, Steel KJA, Srenathan U, Burns LA, Kirkham BW. IL-17 in the immunopathogenesis of spondyloarthritis. Nat Rev Rheumatol. 2018;14:453–66.

    Article  CAS  PubMed  Google Scholar 

  47. Zrioual S, Ecochard R, Tournadre A, Lenief V, Cazalis M-A, Miossec P. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol. 2009;182:3112–20.

    Article  CAS  PubMed  Google Scholar 

  48. Noordenbos T, Blijdorp I, Chen S, Stap J, Mul E, Cañete JD, et al. Human mast cells capture, store, and release bioactive, exogenous IL-17A. J Leukoc Biol. 2016;100:453–62.

    Article  CAS  PubMed  Google Scholar 

  49. Tamassia N, Arruda-Silva F, Calzetti F, et al. A reappraisal on the potential ability of human neutrophils to express and produce IL-17 family members in vitro: failure to reproducibly detect it. Front Immunol. 2018;9:795.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Taylan A, Sari I, Kozaci DL, Yuksel A, Bilge S, Yildiz Y, et al. Evaluation of the T helper 17 axis in ankylosing spondylitis. Rheumatol Int. 2012;32:2511–5.

    Article  CAS  PubMed  Google Scholar 

  51. Mei Y, Pan F, Gao J, et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol. 2011;30:269–73.

    Article  PubMed  Google Scholar 

  52. Jandus C, Bioley G, Rivals J-P, Dudler J, Speiser D, Romero P. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 2008;58:2307–17.

    Article  PubMed  Google Scholar 

  53. Wang C, Liao Q, Hu Y, Zhong DA. T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis. Exp Ther Med. 2015;9:250–6.

    Article  CAS  PubMed  Google Scholar 

  54. Braun J, Baraliakos X, Deodhar A, Poddubnyy D, Emery P, Delicha EM, et al. Secukinumab shows sustained efficacy and low structural progression in ankylosing spondylitis: 4-year results from the MEASURE 1 study. Rheumatology (Oxford). 2019;58:859–68.

    Article  CAS  Google Scholar 

  55. Jo S, Wang SE, Lee YL, Kang S, Lee B, Han J, et al. IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res Ther. 2018;20:115.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shah M, Maroof A, Gikas P, Mittal G, Keen R, Baeten D, et al. Dual neutralisation of IL-17F and IL-17A with bimekizumab blocks inflammation-driven osteogenic differentiation of human periosteal cells. RMD Open. 2020. https://doi.org/10.1136/rmdopen-2020-001306.

  57. van Tok MN, van Duivenvoorde LM, Kramer I, et al. Interleukin-17A inhibition diminishes inflammation and new bone formation in experimental spondyloarthritis. Arthritis Rheumatol (Hoboken NJ). 2019;71:612–25.

    Article  Google Scholar 

  58. Shaw AT, Maeda Y, Gravallese EM. IL-17A deficiency promotes periosteal bone formation in a model of inflammatory arthritis. Arthritis Res Ther. 2016;18:104.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Uluçkan Ö, Jimenez M, Karbach S, et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts. Sci Transl Med. 2016;8:330ra37.

    Article  PubMed  Google Scholar 

  60. Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun. 2018;9:773.

    Article  PubMed  PubMed Central  Google Scholar 

  61. El-Zayadi AA, Jones EA, Churchman SM, Baboolal TG, Cuthbert RJ, El-Jawhari JJ, et al. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology (Oxford). 2017;56:488–93.

    CAS  Google Scholar 

  62. McWilliams IL, Rajbhandari R, Nozell S, Benveniste E, Harrington LE. STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE. J Neuroinflammation. 2015;12:128.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Al-Mossawi MH, Chen L, Fang H, et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat Commun. 2017;8:1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Regan-Komito D, Swann JW, Demetriou P, Cohen ES, Horwood NJ, Sansom SN, et al. GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis. Nat Commun. 2020;11:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gaublomme JT, Yosef N, Lee Y, et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell. 2015;163:1400–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee Y, Awasthi A, Yosef N, et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol. 2012;13:991–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Wit J, Al-Mossawi MH, Hühn MH, et al. RORγt inhibitors suppress T(H)17 responses in inflammatory arthritis and inflammatory bowel disease. J Allergy Clin Immunol. 2016;137:960–3.

    Article  PubMed  Google Scholar 

  68. Han G-W, Zeng L-W, Liang C-X, Cheng B-L, Yu B-S, Li H-M, et al. Serum levels of IL-33 is increased in patients with ankylosing spondylitis. Clin Rheumatol. 2011;30:1583–8.

    Article  PubMed  Google Scholar 

  69. Freemont AJ, Denton J. Disease distribution of synovial fluid mast cells and cytophagocytic mononuclear cells in inflammatory arthritis. Ann Rheum Dis. 1985;44:312–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stavre Z, Bridgewood C, Zhou Q, Maeda Y, Karman J, McGonagle DGE. The role for neutrophils in the early phases of enthesitis in spondyloarthritis [abstract]. Arthritis Rheum. 2020;72:supple10.

    Google Scholar 

  71. De Wilde K, Martens A, Lambrecht S, et al. A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Ann Rheum Dis. 2017;76:585–92.

    Article  PubMed  Google Scholar 

Download references

Funding

This article was supported by grants to NH from the Canadian Institute of Health Research (CIHR) and Arthritis Society. AN is a recipient of CIHR fellowship, Spondyloarthritis Research and Treatment Network (SPARTAN) fellowship, Spondyloarthritis Research Consortium of Canda (SPARCC) fellowship, and Krembil fellowship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigil Haroon.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Article is part of the Topical Collection on Spondyloarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, A., Haroon, N. Recent Updates in the Immunopathology of Type 3 Immunity-Mediated Enthesitis. Curr Rheumatol Rep 23, 31 (2021). https://doi.org/10.1007/s11926-021-00995-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-00995-y

Keywords

Navigation