Skip to main content
Log in

Cardiovascular Safety of Urate Lowering Therapies

  • Crystal Arthritis (L Stamp, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The effect of urate lowering treatment (ULT) on cardiovascular (CV) risk and mortality in gout has been a topic of interest. This review discusses the CV effect of ULT and comparative CV safety among ULT agents.

Recent Findings

The mechanism linking gout with CV risk is not fully understood but seems multifactorial involving hyperuricemia, xanthine oxidase (XO), oxidative stress, and chronic inflammation. Conflicting data exist regarding CV benefits of ULT in adults with and without hyperuricemia. Although meta-analyses on randomized controlled trials (RCTs) suggest CV benefits with allopurinol, few high-quality RCTs have examined the CV effect of ULT among patients with hyperuricemia or gout. The recent CARES trial adds new information on comparative CV safety between two XO inhibitors (XOIs), febuxostat and allopurinol, in patients with gout.

Summary

It remains unclear whether ULT reduces CV risk in patients with gout or hyperuricemia. Comparative CV safety studies of XOIs suggest that additional mechanisms beyond urate-lowering effect or XO inhibition are likely involved in CV risk modification in patients with gout. Ongoing RCTs of ULT may be able to further determine the effect of ULT on CV risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the National Health and Nutrition eExamination Survey 2007-2016. Arthritis Rheumatol. 2019;71:991–9. https://doi.org/10.1002/art.40807.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roddy E, Doherty M. Arthritis Res Ther. 2010;Epidemiology of gout, 12(6):–223.

  3. Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116(8):894–900.

    PubMed  Google Scholar 

  4. Krishnan E, Svendsen K, Neaton JD, et al; MRFIT Research Group. Long-term cardiovascular mortality among middle-aged men with gout. Arch Intern Med 2008;168(10):1104–10.

    PubMed  Google Scholar 

  5. Li M, Hu X, Fan Y, Li K, Zhang X, Hou W, et al. Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci Rep. 2016;6:19520.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum. 2009;61(2):225–32.

    CAS  PubMed  Google Scholar 

  7. Seminog OO, Goldacre MJ. Gout as a risk factor for myocardial infarction and stroke in England: evidence from record linkage studies. Rheumatology (Oxford). 2013;52(12):2251–9.

    Google Scholar 

  8. Storhaug HM, Norvik JV, Toft I, Eriksen BO, Løchen ML, Zykova S, et al. Uric acid is a risk factor for ischemic stroke and all-cause mortality in the general population: a gender specific analysis from the Tromsø study. BMC Cardiovasc Disord. 2013;13:115.

    PubMed  PubMed Central  Google Scholar 

  9. Baker JF, Schumacher HR, Krishnan E. Serum uric acid level and risk for peripheral arterial disease: analysis of data from the multiple risk factor intervention trial. Angiology. 2007;58(4):450–7.

    CAS  PubMed  Google Scholar 

  10. Krishnan E. Gout and the risk for incident heart failure and systolic dysfunction. BMJ Open. 2012;2(1):e000282.

    PubMed  PubMed Central  Google Scholar 

  11. Huang H, Huang B, Li Y, Huang Y, Li J, Yao H, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16(1):15–24.

    CAS  PubMed  Google Scholar 

  12. • Richette P, Perez-Ruiz F, Doherty M, Jansen TL, Nuki G, Pascual E, et al. Improving cardiovascular and renal outcomes in gout: what should we target. Nat Rev Rheumatol. 2014;10(11):654–61. This comprehensive review article discusses multifactorial mechanisms involved in elevated CV risk in patients with hyperuricemia or gout. It also describes potential therapeutic targets to improve CV risk in these patients.

    CAS  PubMed  Google Scholar 

  13. Ruggiero C, Cherubini A, Ble A, Bos AJ, Maggio M, Dixit VD, et al. Uric acid and inflammatory markers. Eur Heart J. 2006;27(10):1174–81.

    CAS  PubMed  Google Scholar 

  14. Pascual E. Persistence of monosodium urate crystals and low-grade inflammation in the synovial fluid of patients with untreated gout. Arthritis Rheum. 1991;34(2):141–5.

    CAS  PubMed  Google Scholar 

  15. Ridker PM, Glynn RJ, Hennekens CH. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation. 1998;97(20):2007–11.

    CAS  PubMed  Google Scholar 

  16. Doehner W, Landmesser U. Xanthine oxidase and uric acid in cardiovascular disease: clinical impact and therapeutic options. Semin Nephrol. 2011;31(5):433–40.

    CAS  PubMed  Google Scholar 

  17. Perez-Ruiz F, Calabozo M, Erauskin GG, Ruibal A, Herrero-Beites AM. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum. 2002;47(6):610–3.

    CAS  PubMed  Google Scholar 

  18. Choi HK, Mount DB, Reginato AM; American College of Physicians; American Physiological Society. Pathogenesis of gout Ann Intern Med 2005;143(7):499–516.

    CAS  PubMed  Google Scholar 

  19. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78(11):6858–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Day RO, Kannangara DR, Stocker SL, Carland JE, Williams KM, Graham GG. Allopurinol: insights from studies of dose-response relationships. Expert Opin Drug Metab Toxicol. 2017;13(4):449–62.

    CAS  PubMed  Google Scholar 

  21. Grewal HK, Martinez JR, Espinoza LR. Febuxostat: drug review and update. Expert Opin Drug Metab Toxicol. 2014;10(5):747–58.

    CAS  PubMed  Google Scholar 

  22. Becker MA, Schumacher HR, Espinoza LR, Wells AF, MacDonald P, Lloyd E, et al. The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: the CONFIRMS trial. Arthritis Res Ther. 2010;12(2):R63.

    PubMed  PubMed Central  Google Scholar 

  23. Anzai N, Enomoto A, Endou H. Renal urate handling: clinical relevance of recent advances. Curr Rheumatol Rep. 2005;7(3):227–34.

    CAS  PubMed  Google Scholar 

  24. Mishima M, Hamada T, Maharani N, Ikeda N, Onohara T, Notsu T, et al. Effects of uric acid on the NO production of HUVECs and its restoration by urate lowering agents. Drug Res (Stuttg). 2016;66(5):270–4.

    CAS  Google Scholar 

  25. Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, et al; American College of Rheumatology. 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken) 2012;64(10):1431–1446.

    CAS  Google Scholar 

  26. Robbins N, Koch SE, Tranter M, Rubinstein J. The history and future of probenecid. Cardiovasc Toxicol. 2012;12(1):1–9.

    CAS  PubMed  Google Scholar 

  27. BRONSKY D, DUBIN A, KUSHNER DS. Diuretic action of benemid; its effect upon the urinary excretion of sodium, chloride, potassium and water in edematous subjects. Am J Med. 1955;18(2):259–66.

    CAS  PubMed  Google Scholar 

  28. Robbins N, Gilbert M, Kumar M, McNamara JW, Daly P, Koch SE, et al. Probenecid improves cardiac function in patients with heart failure with reduced ejection fraction in vivo and cardiomyocyte calcium sensitivity in vitro. J Am Heart Assoc. 2018;7(2):e007148.

    PubMed  PubMed Central  Google Scholar 

  29. Barone S, Xu J, Zahedi K, Brooks M, Soleimani M. Probenecid pre-treatment downregulates the kidney cl/HCO3− exchanger (Pendrin) and potentiates hydrochlorothiazide-induced diuresis. Front Physiol. 2018;9:849.

    PubMed  PubMed Central  Google Scholar 

  30. Nyberg M, Piil P, Kiehn OT, Maagaard C, Jørgensen TS, Egelund J, et al. Probenecid inhibits α-adrenergic receptor-mediated vasoconstriction in the human leg vasculature. Hypertension. 2018;71(1):151–9.

    CAS  PubMed  Google Scholar 

  31. Fujimori S, Ooyama K, Ooyama H, Moromizato H. Efficacy of benzbromarone in hyperuricemic patients associated with chronic kidney disease. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1035–8.

    CAS  PubMed  Google Scholar 

  32. Lee MH, Graham GG, Williams KM, Day RO. A benefit-risk assessment of benzbromarone in the treatment of gout. Was its withdrawal from the market in the best interest of patients? Drug Saf. 2008;31(8):643–65 Review.

    CAS  PubMed  Google Scholar 

  33. Kadowaki D, Sakaguchi S, Miyamoto Y, Taguchi K, Muraya N, Narita Y, et al. Direct radical scavenging activity of benzbromarone provides beneficial antioxidant properties for hyperuricemia treatment. Biol Pharm Bull. 2015;38(3):487–92.

    CAS  PubMed  Google Scholar 

  34. Muraya N, Kadowaki D, Miyamura S, Kitamura K, Uchimura K, Narita Y, et al. Benzbromarone attenuates oxidative stress in angiotensin II- and salt-induced hypertensive model rats. Oxidative Med Cell Longev. 2018;2018:7635274.

    Google Scholar 

  35. Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63:102–10.

    CAS  Google Scholar 

  36. • Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation. 2002;106(2):221–6. This is one of the two randomized controlled trials that showed a beneficial effect of allopurinol in patients with HF after 1 month treatment. Of note, such finding was observed in patients with normouricemia.

    CAS  PubMed  Google Scholar 

  37. • Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation. 2002;105:2619–24. Consistent with the study by Farquharson et al. (reference #36), this study also reported allopurinol-associated endothelial improvement in patients with HF. However, the study showed that a 1-week course of allopurinol improved the endothelial function in hyperuricemic patients, but not in normouricemic patients.

    CAS  PubMed  Google Scholar 

  38. Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Ther. 2012;30(4):217–26.

    CAS  PubMed  Google Scholar 

  39. Alem MM. Allopurinol and endothelial function: a systematic review with meta-analysis of randomized controlled trials. Cardiovasc Ther. 2018;36(4):e12432.

    PubMed  Google Scholar 

  40. Cicero AFG, Pirro M, Watts GF, Mikhailidis DP, Banach M, Sahebkar A. Effects of allopurinol on endothelial function: a systematic review and meta-analysis of randomized placebo-controlled trials. Drugs. 2018;78(1):99–109.

    CAS  PubMed  Google Scholar 

  41. Xin W, Mi S, Lin Z. Allopurinol therapy improves vascular endothelial function in subjects at risk for cardiovascular diseases: a meta-analysis of randomized controlled trials. Cardiovasc Ther. 2016;34(6):441–9.

    CAS  PubMed  Google Scholar 

  42. Alshahawey M, Shahin SM, Elsaid TW, Sabri NA. Effect of febuxostat on the endothelial dysfunction in hemodialysis patients: a randomized, placebo-controlled, double-blinded study. Am J Nephrol. 2017;45(5):452–9.

    CAS  PubMed  Google Scholar 

  43. Tsuruta Y, Kikuchi K, Tsuruta Y, Sasaki Y, Moriyama T, Itabashi M, et al. Febuxostat improves endothelial function in hemodialysis patients with hyperuricemia: a randomized controlled study. Hemodial Int. 2015;19(4):514–20.

    PubMed  Google Scholar 

  44. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. • Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300(8):924–32. This is the first randomized controlled trial that showed a clinical benefit of allopurinol for hypertension. The anti-hypertensive effect of allopurinol among adolescents with newly diagnosed hypertension who had a mild hyperuricemia (≥ 6mg/dL) suggested that the CV effect of urate lowering therapy might be limited to patients with less disease burden from hyperuricemia or from underlying CV risk factors.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Soletsky B, Feig DI. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension. 2012;60(5):1148–56.

    CAS  PubMed  Google Scholar 

  47. Kanbay M, Huddam B, Azak A, Solak Y, Kadioglu GK, Kirbas I, et al. A randomized study of allopurinol on endothelial function and estimated glomular filtration rate in asymptomatic hyperuricemic subjects with normal renal function. Clin J Am Soc Nephrol. 2011;6(8):1887–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim HA, Seo YI, Song YW. Four-week effects of allopurinol and febuxostat treatments on blood pressure and serum creatinine level in gouty men. J Korean Med Sci. 2014;29(8):1077–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47(1):51–9.

    CAS  PubMed  Google Scholar 

  51. McMullan CJ, Borgi L, Fisher N, Curhan G, Forman J. Effect of uric acid lowering on renin-angiotensin-system activation and ambulatory BP: a randomized controlled trial. Clin J Am Soc Nephrol. 2017;12(5):807–16.

    PubMed  PubMed Central  Google Scholar 

  52. Beattie CJ, Fulton RL, Higgins P, Padmanabhan S, McCallum L, Walters MR, et al. Allopurinol initiation and change in blood pressure in older adults with hypertension. Hypertension. 2014;64(5):1102–7.

    CAS  PubMed  Google Scholar 

  53. Qu LH, Jiang H, Chen JH. Effect of uric acid-lowering therapy on blood pressure: systematic review and meta-analysis. Ann Med. 2017;49(2):142–56.

    CAS  PubMed  Google Scholar 

  54. Gois PHF, Souza ERM. Pharmacotherapy for hyperuricemia in hypertensive patients. Cochrane Database Syst Rev. 2017;4:CD008652.

    PubMed  Google Scholar 

  55. Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, et al. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation. 2002;106(24):3073–8.

    CAS  PubMed  Google Scholar 

  56. Anker SD, Doehner W, Rauchhaus M, Sharma R, Francis D, Knosalla C, et al. Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation. 2003;107(15):1991–7.

    PubMed  Google Scholar 

  57. Thanassoulis G, Brophy JM, Richard H, Pilote L. Gout, allopurinol use, and heart failure outcomes. Arch Intern Med. 2010;170(15):1358–64.

    CAS  PubMed  Google Scholar 

  58. Wei L, Fahey T, Struthers AD, MacDonald TM. Association between allopurinol and mortality in heart failure patients: a long-term follow-up study. Int J Clin Pract. 2009;63(9):1327–33.

    CAS  PubMed  Google Scholar 

  59. Hare JM, Mangal B, Brown J, Fisher C Jr, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol. 2008;51(24):2301–9.

    CAS  PubMed  Google Scholar 

  60. • Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study. Circulation. 2015;131(20):1763–71. The EXACT-HF study is a randomized controlled trial of high dose allopurinol (600mg/day) among patients with HF. This trial did not find any benefits of allopurinol on HF unlike the OPT-CHF trial (reference #59), even though the dose of allopurinol used in the EXACT-HF was much higher compared to the bioequivalent dose of oxypurinol used in the OPT-CHF. Whether rapid and profound reduction of serum uric acids by high dose allopurinol was detrimental in the EXACT-HF remains to be determined.

  61. Yokota T, Fukushima A, Kinugawa S, Okumura T, Murohara T, Tsutsui H. Randomized trial of effect of urate-lowering agent febuxostat in chronic heart failure patients with hyperuricemia (LEAF-CHF). Int Heart J. 2018;59(5):976–82.

    PubMed  Google Scholar 

  62. Sakuma M, Toyoda S, Arikawa T, Koyabu Y, Kato T, Adachi T, et al. The effects of xanthine oxidase inhibitor in patients with chronic heart failure complicated with hyperuricemia: a prospective randomized controlled clinical trial of topiroxostat vs allopurinol-study protocol. Clin Exp Nephrol. 2018;22(6):1379–86.

    CAS  PubMed  Google Scholar 

  63. Larsen KS, Pottegård A, Lindegaard HM, Hallas J. Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study. Am J Med. 2016;129(3):299–306.e2.

    CAS  PubMed  Google Scholar 

  64. MacIsaac RL, Salatzki J, Higgins P, Walters MR, Padmanabhan S, Dominiczak AF, et al. Allopurinol and cardiovascular outcomes in adults with hypertension. Hypertension. 2016;67(3):535–40.

    CAS  PubMed  Google Scholar 

  65. Dubreuil M, Zhu Y, Zhang Y, Seeger JD, Lu N, Rho YH, et al. Allopurinol initiation and all-cause mortality in the general population. Ann Rheum Dis. 2015;74(7):1368–72.

    CAS  PubMed  Google Scholar 

  66. Singh JA, Yu S. Allopurinol reduces the risk of myocardial infarction (MI) in the elderly: a study of Medicare claims. Arthritis Res Ther. 2016;18(1):209.

    PubMed  PubMed Central  Google Scholar 

  67. Singh JA, Yu S. Allopurinol and the risk of stroke in older adults receiving medicare. BMC Neurol. 2016;16(1):164.

    PubMed  PubMed Central  Google Scholar 

  68. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Effect of allopurinol on all-cause mortality in adults with incident gout: propensity score-matched landmark analysis. Rheumatology (Oxford). 2015;54(12):2145–50.

    CAS  Google Scholar 

  69. Kim SC, Schneeweiss S, Choudhry N, Liu J, Glynn RJ, Solomon DH. Effects of xanthine oxidase inhibitors on cardiovascular disease in patients with gout: a cohort study. Am J Med. 2015;128(6):653.e7–653.e16.

    CAS  Google Scholar 

  70. Noman A, Ang DS, Ogston S, Lang CC, Struthers AD. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet. 2010;375(9732):2161–7.

    CAS  Google Scholar 

  71. Rekhraj S, Gandy SJ, Szwejkowski BR, Nadir MA, Noman A, Houston JG, et al. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61(9):926–32.

    CAS  PubMed  Google Scholar 

  72. Szwejkowski BR, Gandy SJ, Rekhraj S, Houston JG, Lang CC, Morris AD, et al. Allopurinol reduces left ventricular mass in patients with type 2 diabetes and left ventricular hypertrophy. J Am Coll Cardiol. 2013;62(24):2284–93.

    CAS  PubMed  Google Scholar 

  73. Bredemeier M, Lopes LM, Eisenreich MA, Hickmann S, Bongiorno GK, d'Avila R, et al. Xanthine oxidase inhibitors for prevention of cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2018;18(1):24.

    PubMed  PubMed Central  Google Scholar 

  74. Zhang T, Pope JE. Cardiovascular effects of urate-lowering therapies in patients with chronic gout: a systematic review and meta-analysis. Rheumatology (Oxford). 2017;56(7):1144–53.

    CAS  Google Scholar 

  75. Dawson J, Broomfield N, Dani K, Dickie DA, Doney A, Forbes K, et al. Xanthine oxidase inhibition for the improvement of long-term outcomes following ischaemic stroke and transient ischaemic attack (XILO-FIST) - protocol for a randomised double blind placebo-controlled clinical trial. Eur Stroke J. 2018;3(3):281–90.

    PubMed  PubMed Central  Google Scholar 

  76. Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al; FEATHER study investigators. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 2018;72(6):798–810.

  77. •• Kojima S, Matsui K, Hiramitsu S, Hisatome I, Waki M, Uchiyama K, et al. Febuxostat for cerebral and caRdiorenovascular events PrEvEntion StuDy (FREED) investigators. Eur Heart J. 2019:ehz119. This is a large scale Japanese randomized controlled trial that compared the risk of cerebral, cardiovascular, and renal events between febuxostat and non-febuxostat treatment. The study population consisted of 1,070 elderly patients with CV risk factors and hyperuricemia. The non-febuxostat treatment arm allowed low dose allopurinol treatment (100mg/day) for only those with elevated serum uric acid level (27%) probably due to ethical reasons. The study showed a similar risk for cerebral and CV events but the renal events were reduced by 25% in the febuxostat group compared to non-febuxostat group.

  78. Oyama J, Tanaka A, Sato Y, Tomiyama H, Sata M, Ishizu T, et al. Rationale and design of a multicenter randomized study for evaluating vascular function under uric acid control using the xanthine oxidase inhibitor, febuxostat: the PRIZE study. Cardiovasc Diabetol. 2016;15:87.

    PubMed  PubMed Central  Google Scholar 

  79. Mackenzie IS, Ford I, Walker A, Hawkey C, Begg A, Avery A, et al; ALL-HEART study group. Multicentre, prospective, randomised, open-label, blinded end point trial of the efficacy of allopurinol therapy in improving cardiovascular outcomes in patients with ischaemic heart disease: protocol of the ALL-HEART study. BMJ Open. 2016;6(9):e013774.

    PubMed  PubMed Central  Google Scholar 

  80. Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282(6):F991–7.

    CAS  PubMed  Google Scholar 

  81. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114(23):2508–16.

    CAS  PubMed  Google Scholar 

  82. Borgi L, McMullan C, Wohlhueter A, Curhan GC, Fisher ND, Forman JP. Effect of uric acid-lowering agents on endothelial function: a randomized, double-blind. Placebo-Controlled Trial Hypertension. 2017;69(2):243–8.

    CAS  PubMed  Google Scholar 

  83. Ogino K, Kato M, Furuse Y, Kinugasa Y, Ishida K, Osaki S, et al. Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ Heart Fail. 2010;3(1):73–81.

    CAS  Google Scholar 

  84. •• White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378:1200–10. This is a phase 4 randomized controlled trial that compared the CV risk between febuxostat and allopurinol among 6,190 patients with gout. The study showed that the risk of nonfatal CV events was similar between the two groups but the CV mortality and all-cause mortality was higher in the febuxostat group than the allopurinol group.

    CAS  PubMed  Google Scholar 

  85. Choi H, Neogi T, Stamp L, Dalbeth N, Terkeltaub R. Implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities (CARES) trial and associated FDA public safety alert. Arthritis Rheumatol. 2018;70:1702–9. https://doi.org/10.1002/art.40583.

    Google Scholar 

  86. • Perez-Gomez MV, Bartsch LA, Castillo-Rodriguez E, Fernandez-Prado R, Kanbay M, Ortiz A. Potential dangers of serum urate-lowering therapy. Am J Med. 2019;132(4):457–67. This review focuses on the possible deleterious effect of profoundly decreased serum uric acid levels based on the J shaped relationship between serum uric acid and CV mortality. In light of this, the review also discusses a numerically higher, albeit statistically non-significant, risk of mortality associated with highly potent urate lowering drugs such as febuxostat, lesinurad, and recombinant uricase compared to placebo, observed in recent randomized controlled trials.

    CAS  PubMed  Google Scholar 

  87. Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castañeda-Sanabria J, et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017;76(1):29–42.

    PubMed  Google Scholar 

  88. • Zhang M, Solomon DH, Desai RJ, Kang EH, Liu J, Neogi T, et al. Assessment of cardiovascular risk in older patients with gout initiating febuxostat versus allopurinol: a population-based cohort study. Circulation. 2018.: CIRCULATIONAHA.118.033992. This study is the first large-scale cohort study using the US Medicare database that assessed the comparative cardiovascular risk between febuxostat versus allopurinol. In this study, the risk for CV events and all-cause mortality was not different between the two treatment groups. However, all-cause mortality risk tended to be slightly higher in the febuxostat group versus the allopurinol group when limited to long term users with a follow-up time of ≥ 3 years.

  89. • Kang EH, Choi HK, Shin A, Lee YJ, Lee EB, Song YW, et al. Comparative cardiovascular risk of allopurinol versus febuxostat in patients with gout: a nation-wide cohort study. Rheumatology. 2019 16. pii: kez189. doi: https://doi.org/10.1093/rheumatology/kez189. This is another large-scale cohort study using the Korea National Health Insurance Service database representative of the whole Korean population. Similar to the US Medicare-based study by Zhang et al. (reference #88), the study found no difference in the risk of CV events and all-cause mortality between allopurinol and febuxostat users. The study population consisted of the younger and healthier patients with gout compared to the CARES participants or US Medicare beneficiaries.

  90. •• MacDonald TM, Ford I, Nuki G, Mackenzie IS, De Caterina R, Findlay E, et al. Protocol of the Febuxostat versus Allopurinol Streamlined Trial (FAST): a large prospective, randomised, open, blinded endpoint study comparing the cardiovascular safety of allopurinol and febuxostat in the management of symptomatic hyperuricaemia. BMJ Open. 2014;4(7):e005354. This is an ongoing randomized controlled trial in Europe to compare the CV risk between allopurinol and febuxostat among patients with gout. The study results may be able to provide further information related to the safety results from the CARES trial.

    PubMed  PubMed Central  Google Scholar 

  91. • Kim SC, Neogi T, Kang EH, Liu J, Desai RJ, Zhang M, et al. Cardiovascular risks of probenecid versus allopurinol in older patients with gout. J Am Coll Cardiol. 2018;71(9):994–1004. This is the first population-based cohort study that compared the CV risk between probenecid and allopurinol users enrolled in the US Medicare. Consistent with unique beneficial effects on CV system by probenecid, the study showed a reduced CV risk associated with probenecid compared to allopurinol. However, there is a concern for a possible residual confounding particularly due to different renal status between the two treatment groups.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

Seoyoung C. Kim has received research grants to the Brigham and Women’s Hospital from Roche, Pfizer, AbbVie, and Bristol-Myers Squibb for unrelated topics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Crystal Arthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, E.H., Kim, S.C. Cardiovascular Safety of Urate Lowering Therapies. Curr Rheumatol Rep 21, 48 (2019). https://doi.org/10.1007/s11926-019-0843-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-019-0843-8

Keywords

Navigation