Skip to main content
Log in

The Primary Cilium: Emerging Role as a Key Player in Fibrosis

  • Scleroderma (J Varga, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The myofibroblast is the culprit in the pathogenesis of fibrosis in systemic sclerosis (SSc). Activation of morphogen signaling pathways has been shown to be critically involved in organ fibrosis. Remarkably, the cellular receptors and key molecules from these signaling pathways are localized in the primary cilium. The primary cilium is a unique cellular organelle present in virtually all cells. This article summarizes recent studies evaluating the association between primary cilia and morphogen signaling driving myofibroblast transition and subsequent fibrosis.

Recent Findings

Emerging observations implicate dysfunctional primary cilia in fibrosis in many different tissues and organs. Primary cilia seem to be necessary for the initiation of the transition and sustained activation of myofibroblasts.

Summary

We summarize recent progress in this field and propose the primary cilium as a potential mediator of fibrosis pathogenesis in SSc. Understanding the contributions of primary cilia in fibrosis may ultimately inform the development of entirely new approaches for fibrosis prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Volkmann ER, Varga J. Emerging targets of disease-modifying therapy for systemic sclerosis. Nat Rev Rheumatol. 2019;15:208–24. https://doi.org/10.1038/s41584-019-0184-z.

    Article  PubMed  Google Scholar 

  2. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002. https://doi.org/10.1038/nrdp.2015.2.

    Article  PubMed  Google Scholar 

  3. Angiolilli C, Marut W, van der Kroef M, Chouri E, Reedquist KA, Radstake TRDJ. New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol. 2018;14(11):657–73. https://doi.org/10.1038/s41584-018-0099-0.

    Article  PubMed  Google Scholar 

  4. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180(4):1340–55. https://doi.org/10.1016/j.ajpath.2012.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou G, Dada LA, Wu M, Kelly A, Trejo H, Zhou Q, et al. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. 2009;297(6):L1120–L30. https://doi.org/10.1152/ajplung.00007.2009.

    Article  CAS  Google Scholar 

  6. Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. 2015;67(4):1062–73. https://doi.org/10.1002/art.38990.

    Article  CAS  Google Scholar 

  7. Li Z, Jimenez SA. Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial–mesenchymal transition in vitro. 2011;63(8):2473–83. https://doi.org/10.1002/art.30317.

    Article  CAS  Google Scholar 

  8. Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci. 2011;124(21):3654–64. https://doi.org/10.1242/jcs.086629%J.

  9. Hutchison N, Fligny C, Duffield JS. Resident mesenchymal cells and fibrosis. Biochim Biophys Acta (BBA) Mol Basis Dis. 2013;1832(7):962–71. https://doi.org/10.1016/j.bbadis.2012.11.015.

    Article  CAS  Google Scholar 

  10. Meng X-M, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325. https://doi.org/10.1038/nrneph.2016.48.

    Article  CAS  PubMed  Google Scholar 

  11. Hoeft K, Kramann R. Developmental signaling and organ fibrosis. Curr Pathobiol Rep. 2017;5(2):133–43. https://doi.org/10.1007/s40139-017-0136-8.

    Article  Google Scholar 

  12. Irigoín F, Badano JL. Keeping the balance between proliferation and differentiation: the primary cilium. Curr Genomics. 2011;12(4):285–97. https://doi.org/10.2174/138920211795860134.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ishikawa H, Marshall WF. Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol. 2011;12:222–34. https://doi.org/10.1038/nrm3085.

    Article  CAS  PubMed  Google Scholar 

  14. Reiter JF, Blacque OE, Leroux MR. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 2012;13(7):608–18. https://doi.org/10.1038/embor.2012.73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Phua SC, Chiba S, Suzuki M, Su E, Roberson EC, Pusapati GV, et al. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell. 2017;168(1):264–79.e15. https://doi.org/10.1016/j.cell.2016.12.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Izawa I, Goto H, Kasahara K, Inagaki M. Current topics of functional links between primary cilia and cell cycle. Cilia. 2015;4:12. https://doi.org/10.1186/s13630-015-0021-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Katoh Y, Terada M, Nishijima Y, Takei R, Nozaki S, Hamada H, et al. Overall architecture of the intraflagellar transport (IFT)-B complex containing Cluap1/IFT38 as an essential component of the IFT-B peripheral subcomplex. J Biol Chem. 2016;291(21):10962–75. https://doi.org/10.1074/jbc.M116.713883 This study provides an overview of the architecture of the IFTB complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Nachury MV. The molecular machines that traffic signaling receptors into and out of cilia. Curr Opin Cell Biol. 2018;51:124–31. https://doi.org/10.1016/j.ceb.2018.03.004 This review summarizes the mechanisms associated with the transport of proteins and receptors into and out of primary cilia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. •• Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. 2019. https://doi.org/10.1038/s41581-019-0116-9 This recent review highlights central mechanisms by which the primary cilium coordinates morphogen signaling and ilustrates how dysfunctional cilia are coupled to developmental disorders and disease progression.

    Article  Google Scholar 

  20. •• Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18:533. https://doi.org/10.1038/nrm.2017.60 https://www.nature.com/articles/nrm.2017.60#supplementary-information. This review article provides an overview of the genes and proteins associated with ciliopathies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishimura Y, Kasahara K, Shiromizu T, Watanabe M, Inagaki M. Primary cilia as signaling hubs in health and disease. 2019;6(1):1801138. https://doi.org/10.1002/advs.201801138.

    Article  Google Scholar 

  22. • Clement Christian A, Ajbro Katrine D, Koefoed K, Vestergaard Maj L, Veland Iben R, Henriques de Jesus Maria Perestrello R, et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 2013;3(6):1806–14. https://doi.org/10.1016/j.celrep.2013.05.020 This study provides information regarding localization of TGF-β signaling proteins in the primary cilium.

    Article  CAS  PubMed  Google Scholar 

  23. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13:767–79. https://doi.org/10.1038/nrm3470.

    Article  CAS  PubMed  Google Scholar 

  24. May-Simera HL, Kelley MWJC. Cilia, Wnt signaling, and the cytoskeleton. 2012;1(1):7. https://doi.org/10.1186/2046-2530-1-7.

  25. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99. https://doi.org/10.1016/j.cell.2017.05.016.

    Article  CAS  PubMed  Google Scholar 

  26. Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145(11):dev146589. https://doi.org/10.1242/dev.146589.

    Article  Google Scholar 

  27. Wei J, Fang F, Lam AP, Sargent JL, Hamburg E, Hinchcliff ME, et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. 2012;64(8):2734–45. https://doi.org/10.1002/art.34424.

    Article  CAS  Google Scholar 

  28. Lam AP, Herazo-Maya JD, Sennello JA, Flozak AS, Russell S, Mutlu GM, et al. Wnt coreceptor Lrp5 is a driver of idiopathic pulmonary fibrosis. 2014;190(2):185–95. https://doi.org/10.1164/rccm.201401-0079OC.

    Article  CAS  Google Scholar 

  29. van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc pathophysiology; the myofibroblast. 2018:9(2452). https://doi.org/10.3389/fimmu.2018.02452.

  30. Pala R, Alomari N, Nauli SM. Primary cilium-dependent signaling mechanisms. 2017;18(11):2272. https://doi.org/10.3390/ijms18112272.

    Article  Google Scholar 

  31. Bangs F, Anderson KV. Primary cilia and mammalian hedgehog signaling. 2017;9(5). https://doi.org/10.1101/cshperspect.a028175.

    Article  Google Scholar 

  32. Horn A, Palumbo K, Cordazzo C, Dees C, Akhmetshina A, Tomcik M, et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. 2012;64(8):2724–33. https://doi.org/10.1002/art.34444.

    Article  CAS  Google Scholar 

  33. Goyal A, Linskey KR, Kay J, Duncan LM, Nazarian RM. Differential expression of hedgehog and snail in cutaneous fibrosing disorders: implications for targeted inhibition. Am J Clin Pathol. 2016;146(6):709–17. https://doi.org/10.1093/ajcp/aqw192.

    Article  CAS  PubMed  Google Scholar 

  34. Kramann R, Schneider RK. The identification of fibrosis-driving myofibroblast precursors reveals new therapeutic avenues in myelofibrosis. Blood. 2018;131(19):2111–9. https://doi.org/10.1182/blood-2018-02-834820.

    Article  CAS  Google Scholar 

  35. Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of notch, Wnt and hedgehog. Nat Rev Nephrol. 2016;12:426–39. https://doi.org/10.1038/nrneph.2016.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao L, Zhang Z, Zhang P, Yu M, Yang T. Role of canonical hedgehog signaling pathway in liver. Int J Biol Sci. 2018;14(12):1636–44. https://doi.org/10.7150/ijbs.28089.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Klieser E, Swierczynski S, Mayr C, Jäger T, Schmidt J, Neureiter D, et al. Differential role of hedgehog signaling in human pancreatic (patho-) physiology: an up to date review. World J Gastrointest Pathophysiol. 2016;7(2):199–210. https://doi.org/10.4291/wjgp.v7.i2.199.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Horani A, Ferkol TW. Advances in the genetics of primary ciliary dyskinesia: clinical implications. Chest. 2018;154(3):645–52. https://doi.org/10.1016/j.chest.2018.05.007.

    Article  PubMed  Google Scholar 

  39. Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF III. Mammalian axoneme central pair complex proteins: broader roles revealed by gene knockout phenotypes. 2016;73(1):3–22. https://doi.org/10.1002/cm.21271.

    Article  CAS  Google Scholar 

  40. Boldt K, van Reeuwijk J, Lu Q, Koutroumpas K, Nguyen T-MT, Texier Y, et al. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun. 2016;7:11491. https://doi.org/10.1038/ncomms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gascue C, Katsanis N, Badano JLJPN. Cystic diseases of the kidney: ciliary dysfunction and cystogenic mechanisms. 2011;26(8):1181–95. https://doi.org/10.1007/s00467-010-1697-5.

    Article  Google Scholar 

  42. Choi SY, Chacon-Heszele MF, Huang L, McKenna S, Wilson FP, Zuo X, et al. Cdc42 deficiency causes ciliary abnormalities and cystic kidneys. J Am Soc Nephrol. 2013;24(9):1435–50. https://doi.org/10.1681/ASN.2012121236.

    Article  CAS  Google Scholar 

  43. Zimmerman KA, Song CJ, Gonzalez-Mize N, Li Z, Yoder BK. Primary cilia disruption differentially affects the infiltrating and resident macrophage compartment in the liver. 2018;314(6):G677–G89. https://doi.org/10.1152/ajpgi.00381.2017.

    Article  CAS  Google Scholar 

  44. Sapao P, Shi B, Roberson E, Atkinson J, Strauss J, Teves M, et al. Reduced SPAG17 expression links dysfunctional cilia, morphogen signaling activation and multiple organ fibrosis: novel target for systemic sclerosis. Arthritis Rheumatol. 2018;70.

  45. Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2011;8:42–54. https://doi.org/10.1038/nrrheum.2011.149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Distler JHW, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: frontiers of antifibrotic therapy in systemic sclerosis. Arthritis Rheumatol. 2017;69(2):257–67. https://doi.org/10.1002/art.39865.

    Article  PubMed  Google Scholar 

  47. Egorova AD, Khedoe PPSJ, Goumans M-JTH, Yoder BK, Nauli SM, Dijke P, et al. Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. 2011;108(9):1093–101. https://doi.org/10.1161/CIRCRESAHA.110.231860.

    Article  CAS  Google Scholar 

  48. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151(3):709–18.

    Article  CAS  Google Scholar 

  49. •• Rozycki M, Lodyga M, Lam J, Miranda MZ, Fátyol K, Speight P, et al. The fate of the primary cilium during myofibroblast transition. 2014;25(5):643–57. https://doi.org/10.1091/mbc.e13-07-0429 This study provides compelling evidence suggesting a biphasic role of primary cilia in myofibroblast transition.

    Article  Google Scholar 

  50. Arrighi N, Lypovetska K, Moratal C, Giorgetti-Peraldi S, Dechesne CA, Dani C, et al. The primary cilium is necessary for the differentiation and the maintenance of human adipose progenitors into myofibroblasts. Sci Rep. 2017;7(1):15248. https://doi.org/10.1038/s41598-017-15649-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cigna N, Farrokhi Moshai E, Brayer S, Marchal-Somme J, Wémeau-Stervinou L, Fabre A, et al. The hedgehog system machinery controls transforming growth factor-β–dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am J Pathol. 2012;181(6):2126–37. https://doi.org/10.1016/j.ajpath.2012.08.019.

    Article  CAS  PubMed  Google Scholar 

  52. Villalobos E, Criollo A, Schiattarella Gabriele G, Altamirano F, French Kristin M, May Herman I, et al. Fibroblast primary cilia are required for cardiac fibrosis. Circulation. 0(0). https://doi.org/10.1161/CIRCULATIONAHA.117.028752.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MET and JV are supported by a research award from the Scleroderma Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria E. Teves or John Varga.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teves, M.E., Strauss, J.F., Sapao, P. et al. The Primary Cilium: Emerging Role as a Key Player in Fibrosis. Curr Rheumatol Rep 21, 29 (2019). https://doi.org/10.1007/s11926-019-0822-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-019-0822-0

Keywords

Navigation