Skip to main content
Log in

Voltage-Dependent Calcium Channels in Chondrocytes: Roles in Health and Disease

  • Osteoarthritis (MB Goldring, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Chondrocytes, the single cell type in adult articular cartilage, have conventionally been considered to be non-excitable cells. However, recent evidence suggests that their resting membrane potential (RMP) is less negative than that of excitable cells, and they are fully equipped with channels that control ion, water and osmolyte movement across the chondrocyte membrane. Amongst calcium-specific ion channels, members of the voltage-dependent calcium channel (VDCC) family are expressed in chondrocytes where they are functionally active. L-type VDCC inhibitors such as nifedipine and verapamil have contributed to our understanding of the roles of these ion channels in chondrogenesis, chondrocyte signalling and mechanotransduction. In this narrative review, we discuss published data indicating that VDCC function is vital for chondrocyte health, especially in regulating proliferation and maturation. We also highlight the fact that activation of VDCC function appears to accompany various inflammatory aspects of osteoarthritis (OA) and, based on in vitro data, the application of nifedipine and/or verapamil may be a promising approach for ameliorating OA severity. However, very few studies on clinical outcomes are available regarding the influence of calcium antagonists, which are used primarily for treating cardiovascular conditions in OA patients. This review is intended to stimulate further research on the chondrocyte ‘channelome’, contribute to the development of novel therapeutic strategies and facilitate the retargeting and repositioning of existing pharmacological agents currently used for other comorbidities for the treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Iwamoto M, Ohta Y, Larmour C, Enomoto-Iwamoto M. Toward regeneration of articular cartilage. Birth Defects Res C Embryo Today. 2013;99(3):192–202.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bora Jr FW, Miller G. Joint physiology, cartilage metabolism, and the etiology of osteoarthritis. Hand Clin. 1987;3(3):325–36.

    PubMed  Google Scholar 

  3. Pfander D, Gelse K. Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol. 2007;19(5):457–62.

    Article  CAS  PubMed  Google Scholar 

  4. Rajpurohit R, Koch CJ, Tao Z, Teixeira CM, Shapiro IM. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J Cell Physiol. 1996;168(2):424–32.

    Article  CAS  PubMed  Google Scholar 

  5. Urban JP. The chondrocyte: a cell under pressure. Br J Rheumatol. 1994;33(10):901–8.

    Article  CAS  PubMed  Google Scholar 

  6. Guilak F, Erickson GR, Ting-Beall HP. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys J. 2002;82(2):720–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A. Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol. 2010;222(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  8. van der Windt AE, Haak E, Das RH, Kops N, Welting TJ, Caron MM, et al. Physiological tonicity improves human chondrogenic marker expression through nuclear factor of activated T-cells 5 in vitro. Arthritis Res Ther. 2010;12(3):R100.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Matta C, Fodor J, Szijgyarto Z, Juhasz T, Gergely P, Csernoch L, et al. Cytosolic free Ca2+ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: a possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells. Cell Calcium. 2008;44(3):310–23.

    Article  CAS  PubMed  Google Scholar 

  10. Matta C, Zakany R. Calcium signalling in chondrogenesis: implications for cartilage repair. Front Biosci (Schol Ed). 2013;5:305–24.

    Google Scholar 

  11. Barrett-Jolley R, Lewis R, Fallman R, Mobasheri A. The emerging chondrocyte channelome. Front Physiol. 2010;1:135.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fodor J, Matta C, Juhasz T, Olah T, Gonczi M, Szijgyarto Z, et al. Ionotropic purinergic receptor P2X4 is involved in the regulation of chondrogenesis in chicken micromass cell cultures. Cell Calcium. 2009;45(5):421–30.

    Article  CAS  PubMed  Google Scholar 

  13. Matta C, Fodor J, Miosge N, Takacs R, Juhasz T, Rybaltovszki H, et al. Purinergic signalling is required for calcium oscillations in migratory chondrogenic progenitor cells. Pflugers Arch. 2015;467(2):429–42.

    Article  CAS  PubMed  Google Scholar 

  14. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411–25. Comprehensive and authoritative review of the nomenclature, classification and structure-function relationships of voltage-dependant calcium channels.

  15. Khosravani H, Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev. 2006;86(3):941–66.

    Article  CAS  PubMed  Google Scholar 

  16. Pringos E, Vignes M, Martinez J, Rolland V. Peptide neurotoxins that affect voltage-gated calcium channels: a close-up on omega-agatoxins. Toxins. 2011;3(1):17–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. van Geijn HP, Lenglet JE, Bolte AC. Nifedipine trials: effectiveness and safety aspects. BJOG: Int J Obstet Gynaecol. 2005;112 Suppl 1:79–83.

    Article  Google Scholar 

  18. Spedding M, Paoletti R. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev. 1992;44(3):363–76.

    CAS  PubMed  Google Scholar 

  19. Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8):a003947.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Danielsson BR, Reiland S, Rundqvist E, Danielson M, Danielsson BR, Reiland S, et al. Digital defects induced by vasodilating agents: relationship to reduction in uteroplacental blood flow. Teratology. 1989;40(4):351–8. The original study that highlighted defects in digit development induced by vasodilating agents.

    Article  CAS  PubMed  Google Scholar 

  21. Danielsson BR, Danielson M, Reiland S, Rundqvist E, Dencker L, Regard CG. Histological and in vitro studies supporting decreased uteroplacental blood flow as explanation for digital defects after administration of vasodilators. Teratology. 1990;41(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  22. Stojilkovic SS, Vukicevic S, Luyten FP. Calcium signaling in endothelin- and platelet-derived growth factor-stimulated chondrocytes. J Bone Miner Res. 1994;9(5):705–14.

    Article  CAS  PubMed  Google Scholar 

  23. Duriez J, Flautre B, Blary MC, Hardouin P. Effects of the calcium channel blocker nifedipine on epiphyseal growth plate and bone turnover: a study in rabbit. Calcif Tissue Int. 1993;52(2):120–4.

    Article  CAS  PubMed  Google Scholar 

  24. Zimmermann B, Lange K, Mertens P, Bernimoulin JP. Inhibition of chondrogenesis and endochondral mineralization in vitro by different calcium channel blockers. Eur J Cell Biol. 1994;63(1):114–21.

    CAS  PubMed  Google Scholar 

  25. DiBattista JA, Dore S, Morin N, Abribat T. Prostaglandin E2 up-regulates insulin-like growth factor binding protein-3 expression and synthesis in human articular chondrocytes by a c-AMP-independent pathway: role of calcium and protein kinase A and C. J Cell Biochem. 1996;63(3):320–33.

    Article  CAS  PubMed  Google Scholar 

  26. Poiraudeau S, Lieberherr M, Kergosie N, Corvol MT. Different mechanisms are involved in intracellular calcium increase by insulin-like growth factors 1 and 2 in articular chondrocytes: voltage-gated calcium channels, and/or phospholipase C coupled to a pertussis-sensitive G-protein. J Cell Biochem. 1997;64(3):414–22.

    Article  CAS  PubMed  Google Scholar 

  27. Zuscik MJ, Gunter TE, Puzas JE, Rosier RN. Characterization of voltage-sensitive calcium channels in growth plate chondrocytes. Biochem Biophys Res Commun. 1997;234(2):432–8.

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Wang W, Clark CC, Brighton CT. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthr Cart. 2009;17(3):397–405.

    Article  CAS  Google Scholar 

  29. ElBaradie K, Wang Y, Boyan BD, Schwartz Z. Rapid membrane responses to dihydrotestosterone are sex dependent in growth plate chondrocytes. J Steroid Biochem Mol Biol. 2012;132(1-2):15–23.

    Article  CAS  PubMed  Google Scholar 

  30. Yang M, Brackenbury WJ. Membrane potential and cancer progression. Front Physiol. 2013;4:185.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Taylor AM, Dandona P, Morrell DJ, Preece MA. Insulin like growth factor-I, protein kinase-C, calcium and cyclic AMP: partners in the regulation of chondrocyte mitogenesis and metabolism. FEBS Lett. 1988;236(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wu QQ, Chen Q. Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res. 2000;256(2):383–91. One of the original studies that implicated calcium channels as stretch-activated entities involved in chondrocyte proliferation, maturation, and hypertrophy.

    Article  CAS  PubMed  Google Scholar 

  33. Wohlrab D, Wohlrab J, Reichel H, Hein W. Is the proliferation of human chondrocytes regulated by ionic channels? J Orthop Sci. 2001;6(2):155–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wohlrab D, Vocke M, Klapperstuck T, Hein W. The influence of lidocaine and verapamil on the proliferation, CD44 expression and apoptosis behavior of human chondrocytes. Int J Mol Med. 2005;16(1):149–57.

    CAS  PubMed  Google Scholar 

  35. Mancilla EE, Galindo M, Fertilio B, Herrera M, Salas K, Gatica H, et al. L-type calcium channels in growth plate chondrocytes participate in endochondral ossification. J Cell Biochem. 2007;101(2):389–98.

    Article  CAS  PubMed  Google Scholar 

  36. Fodor J, Matta C, Olah T, Juhasz T, Takacs R, Toth A, et al. Store-operated calcium entry and calcium influx via voltage-operated calcium channels regulate intracellular calcium oscillations in chondrogenic cells. Cell Calcium. 2013;54(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  37. Wang XT, Nagaba S, Nagaba Y, Leung SW, Wang J, Qiu W, et al. Cardiac L-type calcium channel alpha 1-subunit is increased by cyclic adenosine monophosphate: messenger RNA and protein expression in intact bone. J Bone Miner Res. 2000;15(7):1275–85.

    Article  CAS  PubMed  Google Scholar 

  38. Shakibaei M, Mobasheri A. Beta1-integrins co-localize with Na, K-ATPase, epithelial sodium channels (ENaC) and voltage activated calcium channels (VACC) in mechanoreceptor complexes of mouse limb-bud chondrocytes. Histol Histopathol. 2003;18(2):343–51.

    CAS  PubMed  Google Scholar 

  39. Shao Y, Alicknavitch M, Farach-Carson MC. Expression of voltage sensitive calcium channel (VSCC) L-type Cav1.2 (alpha1C) and T-type Cav3.2 (alpha1H) subunits during mouse bone development. Dev Dyn. 2005;234(1):54–62.

    Article  CAS  PubMed  Google Scholar 

  40. Lin SS, Tzeng BH, Lee KR, Smith RJ, Campbell KP, Chen CC. Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci U S A. 2014;111(19):E1990–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tanaka N, Ohno S, Honda K, Tanimoto K, Doi T, Ohno-Nakahara M, et al. Cyclic mechanical strain regulates the PTHrP expression in cultured chondrocytes via activation of the Ca2+ channel. J Dent Res. 2005;84(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  42. Mouw JK, Imler SM, Levenston ME. Ion-channel regulation of chondrocyte matrix synthesis in 3D culture under static and dynamic compression. Biomech Model Mechanobiol. 2007;6(1-2):33–41.

    Article  CAS  PubMed  Google Scholar 

  43. Raizman I, De Croos JN, Pilliar R, Kandel RA. Calcium regulates cyclic compression-induced early changes in chondrocytes during in vitro cartilage tissue formation. Cell Calcium. 2010;48(4):232–42.

    Article  CAS  PubMed  Google Scholar 

  44. Varga Z, Juhasz T, Matta C, Fodor J, Katona E, Bartok A, et al. Switch of voltage-gated K+ channel expression in the plasma membrane of chondrogenic cells affects cytosolic Ca2+-oscillations and cartilage formation. PLoS One. 2011;6(11), e27957.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mobasheri A. The future of osteoarthritis therapeutics: targeted pharmacological therapy. Curr Rheumatol Rep. 2013;15(10):364.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nguyen C, Lieberherr M, Bordat C, Velard F, Come D, Liote F, et al. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation. Osteoarthr Cart. 2012;20(11):1399–408.

    Article  CAS  Google Scholar 

  47. Boileau C, Martel-Pelletier J, Brunet J, Schrier D, Flory C, Boily M, et al. PD-0200347, an alpha2delta ligand of the voltage gated calcium channel, inhibits in vivo activation of the Erk1/2 pathway in osteoarthritic chondrocytes: a PKCalpha dependent effect. Ann Rheum Dis. 2006;65(5):573–80. The first study to explore the in vivo effects of PD-0200347, an alpha(2)delta ligand of voltage gated Ca(2+) channels, on cell signalling in OA chondrocytes from an experimental dog model and examine the effects of this compound on the major signalling pathways involved in OA cartilage degradation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Boileau C, Martel-Pelletier J, Brunet J, Tardif G, Schrier D, Flory C, et al. Oral treatment with PD-0200347, an alpha2delta ligand, reduces the development of experimental osteoarthritis by inhibiting metalloproteinases and inducible nitric oxide synthase gene expression and synthesis in cartilage chondrocytes. Arthritis Rheum. 2005;52(2):488–500.

    Article  CAS  PubMed  Google Scholar 

  49. Takamatsu A, Ohkawara B, Ito M, Masuda A, Sakai T, Ishiguro N, et al. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/beta-catenin signaling. PLoS One. 2014;9(3), e92699.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Prehm P. Inhibitors of hyaluronan export prevent proteoglycan loss from osteoarthritic cartilage. J Rheumatol. 2005;32(4):690–6.

    CAS  PubMed  Google Scholar 

  51. Schulz T, Schumacher U, Prehm P. Hyaluronan export by the ABC transporter MRP5 and its modulation by intracellular cGMP. J Biol Chem. 2007;282(29):20999–1004.

    Article  CAS  PubMed  Google Scholar 

  52. Hagenfeld D, Borkenhagen B, Schulz T, Schillers H, Schumacher U, Prehm P. Hyaluronan export through plasma membranes depends on concurrent K+ efflux by K(ir) channels. PLoS One. 2012;7(6), e39096.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Smith KM. Arthralgia associated with calcium-channel blockers. Am J Health Syst Pharm. 2000;57(1):55–7. The first clinical study that reported on arthralgia associated with the use of calcium channel blockers.

    CAS  PubMed  Google Scholar 

  54. Phillips BB, Muller BA. Severe neuromuscular complications possibly associated with amlodipine. Ann Pharmacother. 1998;32(11):1165–7.

    Article  CAS  PubMed  Google Scholar 

  55. White WB, Black HR, Weber MA, Elliott WJ, Bryzinski B, Fakouhi TD. Comparison of effects of controlled onset extended release verapamil at bedtime and nifedipine gastrointestinal therapeutic system on arising on early morning blood pressure, heart rate, and the heart rate-blood pressure product. Am J Cardiol. 1998;81(4):424–31.

    Article  CAS  PubMed  Google Scholar 

  56. Snider ME, Nuzum DS, Veverka A. Long-acting nifedipine in the management of the hypertensive patient. Vasc Health Risk Manag. 2008;4(6):1249–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Daniilidis K, Georges P, Tibesku CO, Prehm P. Positive side effects of Ca antagonists for osteoarthritic joints—results of an in vivo pilot study. J Orthop Surg Res. 2015;10(1):1. Despite several important flaws in study design, this paper is the first to report positive side-effects of calcium channel antagonists for treating OA.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hille B. Ionic channels of excitable membranes. 2nd ed. Sunderland: Sinauer Associates, Inc.; 1992.

    Google Scholar 

  59. Gardiner MD, Vincent TL, Driscoll C, Burleigh A, Bou-Gharios G, Saklatvala J, et al. Transcriptional analysis of micro-dissected articular cartilage in post-traumatic murine osteoarthritis. Osteoarthr Cart. 2015;23(4):616–28.

    Article  CAS  Google Scholar 

  60. Karlsson C, Dehne T, Lindahl A, Brittberg M, Pruss A, Sittinger M, et al. Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthr Cart. 2010;18(4):581–92.

    Article  CAS  Google Scholar 

  61. Lewis R, May H, Mobasheri A, Barrett-Jolley R. Chondrocyte channel transcriptomics: do microarray data fit with expression and functional data? Channels. 2013;7(6):459–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lewis R, Asplin KE, Bruce G, Dart C, Mobasheri A, Barrett-Jolley R. The role of the membrane potential in chondrocyte volume regulation. J Cell Physiol. 2011;226(11):2979–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Jensen LJ, Holstein-Rathlou NH. Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles? Can J Physiol Pharmacol. 2009;87(1):8–20.

    Article  CAS  PubMed  Google Scholar 

  64. Hunter DJ, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol. 2014;28(1):61–71. The authors describe a fresh approach to biomarker validation and qualification for OA clinical trials that has recently commenced with the Foundation of NIH OA Biomarkers Consortium study. They discuss how biomarkers may support new drug development, preventive medicine, and medical diagnostics for osteoarthritis.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Lotz M, Martel-Pelletier J, Christiansen C, Brandi ML, Bruyere O, Chapurlat R, et al. Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis. 2013;72(11):1756–63. This paper discusses the value of biomarkers in drug development for OA. In addition to being diagnostic and prognostic tools, biomarkers have utility as surrogate endpoints in clinical trials (efficacy of intervention).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jahr H, Matta C, Mobasheri A. Physicochemical and biomechanical stimuli in cell-based articular cartilage repair. Curr Rheumatol Rep. 2015;17(3):493.

    Article  Google Scholar 

Download references

Acknowledgments

Csaba Matta is supported by the European Commission through a Marie Skłodowska-Curie Intra-European Fellowship for career development (project number: 625746; acronym: CHONDRION; FP7-PEOPLE-2013-IEF). Ali Mobasheri is the co-ordinator of the D-BOARD Consortium funded by European Commission Framework 7 programme (EU FP7; HEALTH.2012.2.4.5-2, project number 305815, Novel Diagnostics and Biomarkers for Early Identification of Chronic Inflammatory Joint Diseases). Ali Mobasheri is also a member of the Arthritis Research UK Centre for Sport, Exercise, and Osteoarthritis, funded by Arthritis Research UK (Grant Reference: 20194). Csaba Matta and Róza Zákány are supported by a research and development grant from the Hungarian Government (project number: GOP-1.1.1-11-2012-0197). The authors are especially indebted to Dr Sita Bierma-Zeinstra, Professor of osteoarthritis and related disorders at Erasmus Medical Centre in Rotterdam, The Netherlands, for the critical comments on the clinical aspects of this paper.

Compliance with Ethics Guidelines

Conflict of Interest

Csaba Matta, Róza Zákány and Ali Mobasheri declare no conflicts of interest. The authors wrote this paper within the scope of their academic and affiliated research positions. The authors do not have any commercial relationships that could be construed as biased or inappropriate.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Matta.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matta, C., Zákány, R. & Mobasheri, A. Voltage-Dependent Calcium Channels in Chondrocytes: Roles in Health and Disease. Curr Rheumatol Rep 17, 43 (2015). https://doi.org/10.1007/s11926-015-0521-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0521-4

Keywords

Navigation