Skip to main content
Log in

Beyond Baby Siblings—Expanding the Definition of “High-Risk Infants” in Autism Research

  • Autism Spectrum Disorders (ES Brodkin, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Much of our understanding of early development in children with autism spectrum disorder (ASD) comes from studies of children with a family history of autism. We reviewed the current literature on neurodevelopmental profiles and autism prevalence from other high-risk infant groups to expose gaps and inform next steps. We focused on infants with early medical risk (e.g., preterm birth) and genetic risk (tuberous sclerosis complex [TSC]).

Recent Findings

About 7% of very preterm infants are later diagnosed with ASD. Prospective studies of early development outside of familial-risk infants are rare; however, recent work within preterm and TSC infants suggests interesting similarities and differences from infants with a family history of ASD.

Summary

It is essential that we extend our knowledge of early markers of ASD beyond familial-risk infants to expand our knowledge of autism as it emerges in order to develop better, more individualized early interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  2. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, RS, Wynshaw-Boris A, et al. Patches of disorganization in the neocortex of children with autism. New Engl J Medicine. 2014;370(13):1209–19. https://doi.org/10.1056/nejmoa1307491.

    Article  CAS  Google Scholar 

  3. Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N, Zwaigenbaum L, et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics. 2011;128(3):e488–95. https://doi.org/10.1542/peds.2010-2825.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Charman T, Young GS, Brian J, Carter A, Carver LJ, Chawarska K, et al. Non-ASD outcomes at 36 months in siblings at familial risk for autism spectrum disorder (ASD): a Baby Siblings Research Consortium (BSRC) study. Autism Res. 2017;10(1):169–78. https://doi.org/10.1002/aur.1669.

    Article  PubMed  Google Scholar 

  5. Messinger D, Young GS, Ozonoff S, Dobkins K, Carter A, Zwaigenbaum L, et al. Beyond autism: a Baby Siblings Research Consortium study of high-risk children at three years of age. J Am Acad Child Adolesc Psychiatry. 2013;52(3):300–308.e1. https://doi.org/10.1016/j.jaac.2012.12.011.

    Article  PubMed  PubMed Central  Google Scholar 

  6. McDonald NM, Senturk D, Scheffler A, Brian JA, Carver LJ, Charman T, et al. Developmental trajectories of infants with multiplex family risk for autism: a Baby Siblings Research Consortium study. JAMA Neurol. 2020;77(1):73–81. https://doi.org/10.1001/jamaneurol.2019.3341.

    Article  PubMed  Google Scholar 

  7. Gammer I, Bedford R, Elsabbagh M, Garwood H, Pasco G, Tucker L, et al. Behavioural markers for autism in infancy: scores on the autism observational scale for infants in a prospective study of at-risk siblings. Infant Behav Dev. 2015;38:107–15. https://doi.org/10.1016/j.infbeh.2014.12.017.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jones EJ, Venema K, Lowy R, Earl RK, Webb SJ. Developmental changes in infant brain activity during naturalistic social experiences. Dev Psychobiol. 2015;57(7):842–53. https://doi.org/10.1002/dev.21336.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rogers SJ. What are infant siblings teaching us about autism in infancy? Autism Res. 2009;2(3):125–37. https://doi.org/10.1002/aur.81.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Emerson RW, Adams C, Nishino T, Hazlett HC, Wolff JJ, Zwaigenbaum L, et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med. 2017;9(393):eaag2882. https://doi.org/10.1126/scitranslmed.aag2882.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542(7641):348–51. https://doi.org/10.1038/nature21369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen MD, Kim SH, McKinstry RC, Gu H, Hazlett HC, Nordahl CW, et al. Increased extra-axial cerebrospinal fluid in high-risk infants who later develop autism. Biol Psychiatry. 2017;82(3):186–93. https://doi.org/10.1016/j.biopsych.2017.02.1095.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dickinson A, Daniel M, Marin A, Gaonkar B, Dapretto M, McDonald NM, et al. Multivariate neural connectivity patterns in early infancy predict later autism symptoms. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;(20) 30140–3:S2451–9022. https://doi.org/10.1016/j.bpsc.2020.06.003.

  14. de Jongh BE, Locke R, Paul DA, Hoffman M. The differential effects of maternal age, race/ethnicity and insurance on neonatal intensive care unit admission rates. BMC Pregnancy Childbirth. 2012;12:97. https://doi.org/10.1186/1471-2393-12-97.

    Article  PubMed  PubMed Central  Google Scholar 

  15. MacDorman MF. Race and ethnic disparities in fetal mortality, preterm birth, and infant mortality in the United States: an overview. Semin Perinatol. 2011;35(4):200–8. https://doi.org/10.1053/j.semperi.2011.02.017.

    Article  PubMed  Google Scholar 

  16. Agrawal S, Rao SC, Bulsara MK, Patole SK. Prevalence of autism spectrum disorder in preterm infants: a meta-analysis. Pediatrics. 2018;142(3):e20180134. https://doi.org/10.1542/peds.2018-0134.

    Article  PubMed  Google Scholar 

  17. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23. https://doi.org/10.15585/mmwr.ss6706a1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hirschberger RG, Kuban KCK, O’Shea TM, Joseph RM, Heeren T, Douglass LM, et al. Co-occurrence and severity of neurodevelopmental burden (cognitive impairment, cerebral palsy, autism spectrum disorder, and epilepsy) at age ten years in children born extremely preterm. Pediatr Neurol. 2018;79:45–52. https://doi.org/10.1016/j.pediatrneurol.2017.11.002.

    Article  PubMed  Google Scholar 

  19. Pascal A, Govaert P, Oostra A, Naulaers G, Ortibus E, Van den Broeck C. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev Med Child Neurol. 2018;60(4):342–55. https://doi.org/10.1111/dmcn.13675.

    Article  PubMed  Google Scholar 

  20. Jois RS. Understanding long-term neurodevelopmental outcomes of very and extremely preterm infants: a clinical review. Aust J Gen Pract. 2019;48(1–2):26–32. https://doi.org/10.31128/AJGP-04-18-4545.

    Article  PubMed  Google Scholar 

  21. Talmi Z, Mankuta D, Raz R. Birth weight and autism spectrum disorder: a population-based nested case-control study. Autism Res. 2020;13(4):655–65. https://doi.org/10.1002/aur.2260.

    Article  PubMed  Google Scholar 

  22. Gray PH, Edwards DM, O'Callaghan MJ, Gibbons K. Screening for autism spectrum disorder in very preterm infants during early childhood. Early Hum Dev. 2015;91(4):271–6. https://doi.org/10.1016/j.earlhumdev.2015.02.007.

    Article  PubMed  Google Scholar 

  23. Kuban KC, O'Shea TM, Allred EN, Tager-Flusberg H, Goldstein DJ, Leviton A. Positive screening on the Modified Checklist for Autism in Toddlers (M-CHAT) in extremely low gestational age newborns. J Pediatr. 2009;154(4):535–540.e1. https://doi.org/10.1016/j.jpeds.2008.10.011.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Limperopoulos C, Bassan H, Sullivan NR, Soul JS, Robertson RL Jr, Moore M, et al. Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics. 2008;121(4):758–65. https://doi.org/10.1542/peds.2007-2158.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vermeirsch J, Verhaeghe L, Casaer A, Faes F, Oostra A, Roeyers H. Diagnosing autism spectrum disorder in toddlers born very preterm: estimated prevalence and usefulness of screeners and the autism diagnostic observation schedule (ADOS). J Autism Dev Disord. 2020:1–20. https://doi.org/10.1007/s10803-020-04573-6.

  26. Johnson S, Matthews R, Draper ES, Field DJ, Manktelow BN, Marlow N, et al. Early emergence of delayed social competence in infants born late and moderately preterm. J Dev Behav Pediatr. 2015;36(9):690–9. https://doi.org/10.1097/DBP.0000000000000222.

    Article  PubMed  Google Scholar 

  27. De Schuymer L, De Groote I, Beyers W, Striano T, Roeyers H. Preverbal skills as mediators for language outcome in preterm and full term children. Early Hum Dev. 2011;87(4):265–72. https://doi.org/10.1016/j.earlhumdev.2011.01.029.

    Article  PubMed  Google Scholar 

  28. Landry SH, Denson SE, Swank PR. Effects of medical risk and socioeconomic status on the rate of change in cognitive and social development for low birth weight children. J Clin Exp Neuropsychol. 1997;19(2):261–74. https://doi.org/10.1080/01688639708403856.

    Article  CAS  PubMed  Google Scholar 

  29. Garner PW, Landry SH, Richardson MA. The development of joint attention skills in very-low-birth-weight infants across the first 2 years. Infant Behav Dev. 1991;14(4):489–95. https://doi.org/10.1016/0163-6383(91)90035-q.

    Article  Google Scholar 

  30. Telford EJ, Fletcher-Watson S, Gillespie-Smith K, Pataky R, Sparrow S, Murray IC, et al. Preterm birth is associated with atypical social orienting in infancy detected using eye tracking. J Child Psychol Psychiatry. 2016;57(7):861–8. https://doi.org/10.1111/jcpp.12546.

    Article  PubMed  Google Scholar 

  31. Campbell C, Horlin C, Reid C, McMichael J, Forrest L, Brydges C, et al. How do you think she feels? Vulnerability in empathy and the role of attention in school-aged children born extremely preterm. Br J Dev Psychol. 2015;33(3):312–23. https://doi.org/10.1111/bjdp.12091.

    Article  PubMed  Google Scholar 

  32. Peralta-Carcelen M, Schwartz J, Carcelen AC. Behavioral and socioemotional development in preterm children. Clin Perinatol. 2018;45(3):529–46. https://doi.org/10.1016/j.clp.2018.05.003.

    Article  PubMed  Google Scholar 

  33. Chen L-W, Wang S-T, Wang L-W, Kao Y-C, Chu C-L, Wu C-C, et al. Behavioral characteristics of autism spectrum disorder in very preterm birth children. Mol Autism. 2019;10(1):32. https://doi.org/10.1186/s13229-019-0282-4This article presents data on similarities and differences in the phenotype of children with ASD who were born very preterm vs. those who were not.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen L-W, Wang S-T, Wang L-W, Kao Y-C, Chu C-L, Wu C-C, et al. Early neurodevelopmental trajectories for autism spectrum disorder in children born very preterm. Pediatrics. 2020;146(4):e20200297. https://doi.org/10.1542/peds.2020-0297This study uniquely examined developmental trajectories that differentially predicted ASD outcomes in very preterm infants.

    Article  PubMed  Google Scholar 

  35. Landa RJ, Gross AL, Stuart EA, Bauman M. Latent class analysis of early developmental trajectory in baby siblings of children with autism. J Child Psychol Psychiatry. 2012;53(9):986–96. https://doi.org/10.1111/j.1469-7610.2012.02558.x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jeste SS, Wu JY, Senturk D, Varcin K, Ko J, McCarthy B, et al. Early developmental trajectories associated with ASD in infants with tuberous sclerosis complex. Neurology. 2014;83(2):160–8. https://doi.org/10.1212/WNL.0000000000000568.

    Article  PubMed Central  Google Scholar 

  37. Calderon J, Bellinger DC, Newburger JW. Autism and congenital heart disease: evidence and unresolved questions. Pediatrics. 2019;144(5):e20192752. https://doi.org/10.1542/peds.2019-2752.

    Article  PubMed  Google Scholar 

  38. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J Pediatr. 2008;153(6):807–13. https://doi.org/10.1016/j.jpeds.2008.05.059.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Oster ME, Lee KA, Honein MA, Riehle-Colarusso T, Shin M, Correa A. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics. 2013;131(5):e1502–8. https://doi.org/10.1542/peds.2012-3435.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management. Circulation. 2012;126(9):1143–72. https://doi.org/10.1161/cir.0b013e318265ee8a.

    Article  PubMed  Google Scholar 

  41. Sigmon ER, Kelleman M, Susi A, Nylund CM, Oster ME. Congenital heart disease and autism: a case-control study. Pediatrics. 2019;144(5):e20184114. https://doi.org/10.1542/peds.2018-4114.

    Article  PubMed  Google Scholar 

  42. Razzaghi H, Oster M, Reefhuis J. Long-term outcomes in children with congenital heart disease: national health interview survey. J Pediatr. 2015;166(1):119–124.e1. https://doi.org/10.1016/j.jpeds.2014.09.006.

    Article  PubMed  Google Scholar 

  43. Tsao P-C, Lee Y-S, Jeng M-J, Hsu J-W, Huang K-L, Tsai S-J, et al. Additive effect of congenital heart disease and early developmental disorders on attention-deficit/hyperactivity disorder and autism spectrum disorder: a nationwide population-based longitudinal study. Eur Child Adolesc Psychiatry. 2017;26(11):1351–9. https://doi.org/10.1007/s00787-017-0989-8.

    Article  PubMed  Google Scholar 

  44. Klin A, Jones W. An agenda for 21st century neurodevelopmental medicine: lessons from autism. Rev Neurol. 2018;66(S01):S3–S15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Datta AN, Hahn CD, Sahin M. Clinical presentation and diagnosis of tuberous sclerosis complex in infancy. J Child Neurol. 2008;23(3):268–73. https://doi.org/10.1177/0883073807309250.

    Article  PubMed  Google Scholar 

  46. Davis PE, Filip-Dhima R, Sideridis G, Peters JM, Au KS, Northrup H, et al. Presentation and diagnosis of tuberous sclerosis complex in infants. Pediatrics. 2017;140(6):e20164040. https://doi.org/10.1542/peds.2016-4040.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ebrahimi-Fakhari D, Mann LL, Poryo M, Graf N, von Kries R, Heinrich B, et al. Incidence of tuberous sclerosis and age at first diagnosis: new data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis. 2018;13(1):117. https://doi.org/10.1186/s13023-018-0870-y.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bolton PF, Clifford M, Tye C, Maclean C, Humphrey A, le Maréchal K, et al. Intellectual abilities in tuberous sclerosis complex: risk factors and correlates from the tuberous sclerosis 2000 study. Psychol Med. 2015;45(11):2321–31. https://doi.org/10.1017/S0033291715000264.

    Article  CAS  PubMed  Google Scholar 

  49. Curatolo P, Napolioni V, Moavero R. Autism spectrum disorders in tuberous sclerosis: pathogenetic pathways and implications for treatment. J Child Neurol. 2010;25(7):873–80. https://doi.org/10.1177/0883073810361789.

    Article  PubMed  Google Scholar 

  50. Jeste SS, Varcin KJ, Hellemann GS, Gulsrud AC, Bhatt R, Kasari C, et al. Symptom profiles of autism spectrum disorder in tuberous sclerosis complex. Neurology. 2016;87(8):766–72. https://doi.org/10.1212/WNL.0000000000003002.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Williams ME, Pearson DA, Capal JK, Byars AW, Murray DS, Kissinger R, et al. Impacting development in infants with tuberous sclerosis complex: multidisciplinary research collaboration. Am Psychol. 2019;74(3):356–67. https://doi.org/10.1037/amp0000436.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Capal JK, Horn PS, Murray DS, Byars AW, Bing NM, Kent B, et al. Utility of the autism observation scale for infants in early identification of autism in tuberous sclerosis complex. Pediatr Neurol. 2017;75:80–6. https://doi.org/10.1016/j.pediatrneurol.2017.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  53. McDonald NM, Varcin KJ, Bhatt R, Wu JY, Sahin M, Nelson CA 3rd, et al. Early autism symptoms in infants with tuberous sclerosis complex. Autism Res. 2017;10(12):1981–90. https://doi.org/10.1002/aur.1846.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dickinson A, Varcin KJ, Sahin M, Nelson CA 3rd, Jeste SS. Early patterns of functional brain development associated with autism spectrum disorder in tuberous sclerosis complex. Autism Res. 2019;12(12):1758–73. https://doi.org/10.1002/aur.2193.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Prohl AK, Scherrer B, Tomas-Fernandez X, Filip-Dhima R, Kapur K, Velasco-Annis C, et al. Reproducibility of structural and diffusion tensor imaging in the TACERN multi-center study. Front Integr Neurosci. 2019;13:24. https://doi.org/10.3389/fnint.2019.00024.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lord J, McMullan DJ, Eberhardt RY, Rinck G, Hamilton SJ, Quinlan-Jones E, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet. 2019;393(10173):747–57. https://doi.org/10.1016/S0140-6736(18)31940-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Petrovski S, Aggarwal V, Giordano JL, Stosic M, Wou K, Bier L, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet. 2019;393(10173):758–67. https://doi.org/10.1016/S0140-6736(18)32042-7.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J, Li J, Saucier JB, Feng Y, Jiang Y, Sinson J, et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat Med. 2019;25(3):439–47. https://doi.org/10.1038/s41591-018-0334-x.

    Article  CAS  PubMed  Google Scholar 

  59. Siu AL, UPSTF. Screening for autism spectrum disorder in young children: US preventive services task force recommendation statement. JAMA. 2016;315(7):691–6. https://doi.org/10.1001/jama.2016.0018.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Dr. McDonald's work on this review was support by a career development award from the National Institute of Child Health and Human Development (1 K23 HD096046-01A1), and Dr. Jeste's by a National Institute of Health Autism Center of Excellence grant (5 P50 HD055784-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole M. McDonald.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Autism Spectrum Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, N.M., Jeste, S.S. Beyond Baby Siblings—Expanding the Definition of “High-Risk Infants” in Autism Research. Curr Psychiatry Rep 23, 34 (2021). https://doi.org/10.1007/s11920-021-01243-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11920-021-01243-x

Keywords

Navigation