Skip to main content
Log in

What Does Sex Have to Do with It? The Role of Sex as a Biological Variable in the Development of Posttraumatic Stress Disorder

  • Sex and Gender Issues in Behavioral Health (CN Epperson and L Hantsoo, Section Editors)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review highlights the neurobiological aspects of sex differences in posttraumatic stress disorder (PTSD), specifically focusing on the physiological responses to trauma and presents evidence supporting hormone and neurosteroid/peptide differences from both preclinical and clinical research.

Recent Findings

While others have suggested that trauma type or acute emotional reaction are responsible for women’s disproportionate risk to PTSD, neither of these explanations fully accounts for the sex differences in PTSD. Sex differences in brain neurocircuitry, anatomy, and neurobiological processes, such as those involved in learning and memory, are discussed as they have been implicated in risk and resilience for the development of PTSD. Gonadal and stress hormones have been found to modulate sex differences in the neurocircuitry and neurochemistry underlying fear learning and extinction.

Summary

Preclinical research has not consistently controlled for hormonal and reproductive status of rodents nor have clinical studies consistently examined these factors as potential moderators of risk for PTSD. Sex as a biological variable (SABV) should be considered, in addition to the endocrine and reproductive status of participants, in all stress physiology and PTSD research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mentaldisorders (3rd ed.). Washington, DC: Author; 1980.

    Google Scholar 

  2. Breslau N, Davis GC. Posttraumatic stress disorder in an urban population of young adults: risk factors for chronicity. Am J Psychiatry. 1992;149(5):671–5.

    Article  PubMed  CAS  Google Scholar 

  3. Breslau N, Kessler RC, Chilcoat HD, Schultz LR, Davis GC, Andreski P. Trauma and posttraumatic stress disorder in the community: the 1996 Detroit area survey of trauma. Arch Gen Psychiatry. 1998;55(7):626–32.

    Article  PubMed  CAS  Google Scholar 

  4. Davidson JR, Hughes D, Blazer DG, George L. Post-traumatic stress disorder in the community: an epidemiological study. Psychol Med. 1991;21(3):713–21.

    Article  PubMed  CAS  Google Scholar 

  5. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52:1048–60. https://doi.org/10.1001/archpsyc.1995.03950240066012.

    Article  PubMed  CAS  Google Scholar 

  6. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author; 2013.

    Book  Google Scholar 

  7. Christiansen DM, Elklit A. Sex differences in PTSD. In: Lazinica A, Ovuga E, editors. Posttraumatic stress disorder in a global context. Rijeka: InTech–Open Access Book; 2012. p. 113–42.

    Google Scholar 

  8. Koenen KC, Widom CS. A prospective study of sex differences in the lifetime risk of posttraumatic stress disorder among abused and neglected children grown up. J Trauma Stress. 2009;22(6):566–74. https://doi.org/10.1002/jts.20478.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tolin DF, Foa EB. Sex differences in trauma and posttraumatic stress disorder: a quantitative review of 25 years of research. Psychol Bull. 2006;132(6):959–92.

    Article  PubMed  Google Scholar 

  10. Bödvarsdóttir I, Elklit A. Psychological reactions in Icelandic earthquake survivors. Scand J Psychol. 2004;45(1):3–13.

    Article  PubMed  Google Scholar 

  11. Gil S, Caspi Y, Zilberman Ben-Ari I, Koren D, Klein E. Does memory of a traumatic event increase the risk for posttraumatic stress disorder in patients with traumatic brain injury? A prospective study. Am J of Psychiatry. 2005;162(5):963–9.

    Article  Google Scholar 

  12. Tolin DF, Gender FEB. PTSD: a cognitive model. In: Kimerling R, Ouimette P, Wolfe J, editors. Gender and PTSD. New York: The Guilford Press; 2002. p. 66–97.

    Google Scholar 

  13. Cromer LD, Smyth JM. Making meaning of trauma: trauma exposure doesn’t tell the whole story. J Contemp Psychother. 2010;40:65–72.

    Article  Google Scholar 

  14. Ahern J, Galea S, Fernandez WG, Koci B, Waldman R, Vlahov D. Gender, social support, and posttraumatic stress in postwar Kosovo. J Nerv Ment Dis. 2004;192(11):762–70.

    Article  PubMed  Google Scholar 

  15. Zeidner M. Gender group differences in coping with chronic terror: the Israeli scene. Sex Roles. 2006;54:297–310. https://doi.org/10.1007/s11199-006-9346-y.

    Article  Google Scholar 

  16. Hapke U, Schumann A, Rumpf HJ, John U, Meyer C. Post-traumatic stress disorder: the role of trauma, pre-existing psychiatric disorders, and gender. Eur Arch Psychiatry Clin Neurosci. 2006;256(5):299–306.

    Article  PubMed  Google Scholar 

  17. Spindler H, Elkit A, Christiansen D. Risk factors for posttraumatic stress disorder following an industrial disaster in a residential area: a note on the origin of observed gender differences. Gend Med. 2010;7(2):156–65.

    Article  PubMed  Google Scholar 

  18. Fullerton CS, Ursano RJ, Epstein RS, Crowley B, Vance K, Kao TC, et al. Gender differences in posttraumatic stress disorder after motor vehicle accidents. Am J Psychiatry. 2001;158(9):1486–91.

    Article  PubMed  CAS  Google Scholar 

  19. Breslau N, Davis GC, Andreski P, Peterson EL, Schultz LR. Sex differences in posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54(11):1044–8.

    Article  PubMed  CAS  Google Scholar 

  20. Clohessy S, Ehlers A. PTSD symptoms, response to intrusive memories and coping in ambulance service workers. Br. Clin Psychol. 1999;38(Pt 3):251–65.

    Google Scholar 

  21. Ehring T, Ehlers A, Cleare AJ, Glucksman E. Do acute psychological and psychobiological responses to trauma predict subsequent symptoms severities of PTSD and depression? Psychiatry Res. 2006;161(1):67–75.

    Article  Google Scholar 

  22. Ozer EJ, Best SR, Lipsey TL, Weiss DS. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull. 2003;129(1):52–73.

    Article  PubMed  Google Scholar 

  23. Bryant RA, Creamer M, O’Donnell M, Silove D, McFarlane AC. A multisite study of initial respiration rate and heart rate as predictors of posttraumatic stress disorder. J Clin Psychiatry. 2008;69(11):1694–701.

    Article  PubMed  Google Scholar 

  24. Bryant RA. Acute stress reactions: can biological responses predict posttraumatic stress disorder? CNS Spectr. 2003;8(9):668–74.

    Article  PubMed  Google Scholar 

  25. Irish LA, Fischer B, Fallon W, Spoonster E, Sledjeski EM, Delahanty DL. Gender differences in PTSD symptoms: an exploration of peritraumatic mechanisms. Journal of Anxiety Disorders. 2011;25(2):209–16.

    Article  PubMed  Google Scholar 

  26. Tamres LK, Janicki D, Helgeson VS. Sex differences in coping behavior: a meta-analytic review and an examination of relative coping. Personal Soc Psychol Rev. 2002;6(1):2–30.

    Article  Google Scholar 

  27. • Maeng LY, Milad MR. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Horm Behav. 2015;76:106–17. This review paper discusses the intersection between stress and fear mechanisms and their modulation by gonadal hormones relevant to sex differences in anxiety and fear-based disorders.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. •• Shvil E, Sullivan GM, Schafer S, Markowitz JC, Campeas M, Wager TD, et al. Sex differences in extinction recall in posttraumatic stress disorder: a pilot fMRI study. Neurobiol Learn Mem. 2014;113:101–8. Shvil and colleagues explored the biological markers of sex differences in relation to trauma by using a fear learning and extinction paradigm and fMRI in PTSD vs trauma exposed non-PTSD individuals.

    Article  PubMed  PubMed Central  Google Scholar 

  29. •• Wiersielis KR, Wicks B, Simko H, Cohen SR, Khantsis S, Baksh N, et al. Sex differences in corticotropin releasing factor-evoked behavior and activated networks. Psychoneuroendocrinology. 2016;73:204–16. This paper found that ovarian hormones alter the way brain regions work in response to corticotropin releasing factor, which may be responsible for the different coping strategies displayed by males and females. It also suggests an explanation for female vulnerability to psychiatric illness.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Puralewski R, Vasilakis G, Seney ML. Sex-related factors influence expression of mood-related genes in the basolateral amygdala differentially depending on age and stress exposure. Biol Sex Differ. 2016 Sep 17;7:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bremner JD, Licino J, Darnell A, Krystal JH, Owens MJ, Southwisk SM, et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry. 1997;154(5):624–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, et al. Elevated conceotrations of CSF corticotropic-releasing factor-like immunoreactivity in depressed patients. Science. 1984;226(4680):1342–4.

    Article  PubMed  CAS  Google Scholar 

  33. • Bangasser DA, Valentino RJ. Sex difference in stress-related psychiatric disorders: neurobiological perspectives. Front Neuroendocrinol. 2014;35(3):303–19. This review describes clinical and preclinical studies that identify sex differences in the underlying circuitry of the neuroendocrine and the corticolimbic systems, and the HPA axis, and demonstrate cellular and molecular sex differences in stress response systems.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bangasser, D.A., Curtis, A., Reyes, B.A, Bethea, T.T., Parastatidis, I., Ischiropoulos, H., Van Bockstaele, E.J., Valentino, R.J.. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress related psychopathology. Mol Psychiatry. 2010; 15(9): 877, 896–904.

  35. • Howerton AR, Roland AV, Fluharty JM, Marshall A, Chen A, Daniels D, et al. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol Psychiatry. 2014;75(11):873–83. These authors found that male mice were more receptive to the effects of CRF antagonist infusions compared to females which showed a blunted response. These sex differences in the CRF receptor-1 throughout the dorsal raphe suggest unique stress modulation of the dorsal raphe among females and may underlie women’s vulnerability to affective disorder development and maintenance.

    Article  PubMed  CAS  Google Scholar 

  36. Williams TJ, Akama KT, Knudsen MG, McEwen BS, Milner TA. Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites. Exp Neurol. 2011;230(2):186–96. https://doi.org/10.1016/j.expneurol.2011.04.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Williams MA, McGlone F, Abbott DF, Mattingley JB. Differential amygdala responses to happy and fearful facial expressions depend on selective attention. NeuroImage. 2005;24(2):417–25.

    Article  PubMed  Google Scholar 

  38. Howard O, Carr GV, Hill TE, Valentino RJ, Lucki I. Differential blockade of CRF evoked behaviors by depletion of norepinephrine and serotonin in rats. Psychopharmacology. 2008;199(4):569–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Albert K, Pruessner J, Newhouse P. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle. Psychoneuroendocrinology. 2015;59:14–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dumas JA, Albert KM, Naylor MR, Sites CK, Benkelfat C, Newhouse PA. The effects of age and estrogen on stress responsivity in older women. Am J Geriatr Psychiatry. 2012;20(9):734–43.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Daviu N, Andero R, Armario A, Nadal R. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats. Horm Behav. 2014;66:713–23.

    Article  PubMed  CAS  Google Scholar 

  42. Aguilar R, Gil L, Gray JA, Driscoll P, Flint J, Dawson GR, et al. Fearfulness and sex in F2 roman rats: males display more fear though both sexes share the same fearfulness traits. Physiol Behav. 2003;78(4–5):723–32.

    Article  PubMed  CAS  Google Scholar 

  43. Baker-Andresen D, Flavell CR, Li X, Bredy TW. Activation of BDNF signaling prevents the return of fear in female mice. Learn Mem. 2013;20(5):237–40.

    Article  PubMed  CAS  Google Scholar 

  44. Baran SE, Armstrong CE, Niren DC, Conrad CD. Prefrontal cortex lesions and sex differences in fear extinction and perseveration. Learn Mem. 2010;17(5):267–78.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Baran SE, Armstrong CE, Niren DC, Hanna JJ, Conrad CD. Chronic stress and sex differences on the recall of fear conditioning and extinction. Neurobiol Learn Mem. 2009;91(3):323–32.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fenton GE, Pollard AK, Halliday DM, Mason R, Bredy TW, Stevenson CW. Persistent prelimbic cortex activity contributes to enhanced learned fear expression in females. Learn Mem. 2014;21(2):55–60.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ribiero A, Barbosa FF, Godhino MR, Fernandes VS, Munguba H, Melo TG, et al. Sex differences in aversive memory in rats: possible role of extinction and reactive emotional factors. Brain Cogn. 2010;74(2):145–51.

    Article  Google Scholar 

  48. Gruene TM, Flick K, Stefano A, Shea SD, Shansky RM. Sexually divergent expression of active and passive conditioned fear responses in rats. elife. 2015;4:e11352.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gruene TM, Roberts E, Thomas V, Ronzio A, Shansky RM. Sex-specific neuroanatomical correlates of fear expression in prefrontal-amygdala circuits. Biol Psychiatry. 2015;78(3):186–93. https://doi.org/10.1016/j.biopsych.2014.11.014.

    Article  PubMed  Google Scholar 

  50. •• Shansky RM, Woolley CS. Considering sex as a biological variable will be valuable for neuroscience research. J Neurosci. 2016;36(47):11817–22. This paper is a call for research to include sex as a biological variable (SABV) and the authors present compelling evidence for why doing so will strengthen basic science research and improve health outcomes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shansky RM. Sex differences in PTSD resilience and susceptibility: challenges for animal models of fear learning. Neurobiol of Stress. 2015;1:60–5.

    Article  Google Scholar 

  52. Milad MR, Rauch SL, Pitman RK, Quirk GJ. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol. 2006;73:61–71.

    Article  PubMed  Google Scholar 

  53. Kelly MM, Forsyth JP. Sex differences in response to an observational fear conditioning procedure. Behav Ther. 2007;38(4):340–9.

    Article  PubMed  Google Scholar 

  54. Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Goldstein JM, Jerram M, Abbs B, Whitfield-Gabrieli S, Makris N. Sex differences in stress response circuitry activation dependent on female hormonal cycle. J Neurosci. 2010;30(2):431–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Glover EM, Jovanovic T, Mercer KB, Kerley K, Bradley B, Ressler KJ, et al. Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder. Biol Psychiatry. 2012;72(1):19–24. https://doi.org/10.1016/j.biopsych.2012.02.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zeidan MA, Igoe SA, Linnman C, Vitalo A, Levine JB, Klibanski A, et al. Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biol Psychiatry. 2011;70:920–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lebron-Milad K, Graham BM, Milad MR. Low estradiol levels: a vulnerability factor for the development of posttraumatic stress disorder. Biol Psychiatry. 2012;72(1):6–7.

    Article  PubMed  CAS  Google Scholar 

  59. Inslicht SS, Metzler TJ, Garcia NM, Pineles SL, Milad MR, Orr SP, et al. Sex differences in fear conditioning in posttraumatic stress disorder. J Psychiatr Res. 2013;47(1):64–71.

    Article  PubMed  Google Scholar 

  60. • Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen's effects on executive functions in the menopause transition. Hum Brain Mapp. 2014;35(3):847–65. This review presents evidence from preclinical rodent and non-human primate as well as human studies for consideration of the interactions of estrogen with neurotransmitter systems, stress, genotype, and individual life events related to cognitive changes associate with menopause.

    Article  PubMed  Google Scholar 

  61. Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W, et al. Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2002;59(9):851–8.

    Article  PubMed  CAS  Google Scholar 

  62. Shanmugan S, Wolf DH, Calkins ME, Moore TM, Ruparel K, Hopson RD, et al. Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth. Am J Psychiatry. 2016;173(5):517–26.

    Article  PubMed  PubMed Central  Google Scholar 

  63. • Shanmugan S, Satterthwaite TD, Sammel MD, Cao W, Ruparel K, Gur RC, et al. Impact of early life adversity and tryptophan depletion on functional connectivity in menopausal women: A double-blind, placebo-controlled crossover study. Psychoneuroendocrinology. 2017;84:197–205. Results from this study of menopausal women suggest that early life adversity has lasting impacts on large-scale functional networks underlying executive function.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Amin Z, Mason GF, Cavus I, Krystal JH, Rothman DL, Epperson CN. The interaction of neuroactive steroids and GABA in the development of neuropsychiatric disorders in women. Pharmacol Biochem Behav. 2006;84(4):635–43.

    Article  PubMed  CAS  Google Scholar 

  65. Hantsoo L, Epperson CN. Premenstrual dysphoric disorder: epidemiology and treatment. Curr Psychiatry Rep. 2015;17(11):87.

    Article  PubMed  PubMed Central  Google Scholar 

  66. McLean CP, Asnaani A, Litz BT, Hofmann SG. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res. 2011;45(8):1027–35.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9(12):947–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. • Skovlund CW, Mørch LS, Kessing LV, Lidegaard O. Association of hormonal contraception with depression. JAMA Psychiatry. 2016;73(11):1154–62. https://doi.org/10.1001/jamapsychiatry.2016.2387. These authors found that among women who used hormonal contraceptive, initiation of anti-depressant medications was more common than in women who did not use hormonal contraception. This suggests a connection between neuroactive steroid levels/reproductive status and development or exacerbation of trauma related psychopathology.

    Article  PubMed  Google Scholar 

  69. •• Li SH, Graham BM. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry. 2017;4(1):73–82. This review paper highlights two broad mechanisms by which estradiol and progesterone influence sex differences in anxiety disorders: augmentation of vulnerability factors associated with the development of anxiety disorders; and facilitation of the maintenance of anxious symptoms.

    Article  PubMed  Google Scholar 

  70. • Bale TL, Epperson CN. Sex as a biological variable: who, what, when, why, and how. Neuropsychopharmacology. 2017;42(2):386–96. The authors of this review discuss examples of both animal models and clinical studies and provide guidance and references for the inclusion of sex as a biological variable in neuropsychopharmacological research

    Article  PubMed  CAS  Google Scholar 

  71. Gordon JL, Girdler SS, Meltzer-Brody SE, Stika CS, Thurston RC, Clark CT, et al. Ovarian hormone fluctuation, Neurosteroids and HPA Axis dysregulation in Perimenopausal depression: a novel heuristic model. Am J Psychiatry. 2015;172(3):227–36. https://doi.org/10.1176/appi.ajp.2014.14070918.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Andreen L, Nyberg S, Turkmen S, van Wingen G, Fernandez G, Backstrom T. Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators. Psychineuroendocrinology. 2009;34(8):1121–32.

    Article  CAS  Google Scholar 

  73. Zorumski CF, Paul SM, Izumi Y, Covey DF, Mennerick S. Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev. 2013;37(1):109–22.

    Article  PubMed  CAS  Google Scholar 

  74. Uhde TW, Singareddy R. Psychiatry as a neuroscience. In: Juan Jose L-I, Wolfgang G, Mario M, Norman S, editors. Biological research in anxiety disorders. Chichester: John Wiley & Sons, Ltd; 2002. p. 237–86.

    Google Scholar 

  75. Ertman N, Andreano JM, Cahill L. Progesterone at encoding predicts subsequent emotional memory. Learn Mem. 2011;18(12):759–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ferree NK, Cahill L. Post-event spontaneous intrusive recollections and strength of memory for emotional events in men and women. Conscious Cogn. 2009;18:126–34.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ferree NK, Kamat R, Cahill L. Influences of menstrual cycle position and sex hormone levels on spontaneous intrusive recollections following emotional stimuli. Conscious Cogn. 2011;20(4):1154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Soni M, Curran VH, Kamboj SK. Identification of a narrow post-ovulatory window of vulnerability to distressing involuntary memories in healthy women. Neurobiol Learn Mem. 2013;104:32–28.

    Article  PubMed  Google Scholar 

  79. Van Wingen GA, van Broekhoven F, Verkes RJ, Petersson KM, Backstrom T, Buitelaar JK, et al. Progesterone selectively increases amygdala reactivity in women. Mol Psych. 2008;13:325–33.

    Article  CAS  Google Scholar 

  80. Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Lambombarda F, et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol. 2014;113:6–39.

    Article  PubMed  CAS  Google Scholar 

  81. Nagaya N, Acca GM, Maren S. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats. Front Behav Neurosci. 2015;9:205. https://doi.org/10.3389/fnbeh.2015.00205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Markus EJ, Zecevic M. Sex differences and estrous cycle changes in hippocampus-dependent fear conditioning. Psychobiology. 1997;25:246–52.

    Google Scholar 

  83. Toufexis DJ, Davis C, Hammond A, Davis M. Progesterone attenuates corticotropin-releasing factor- enhanced but not fear-potentiated startle via the activity of its neuroactive metabolite, allopregnanolone. J Neurosci. 2004;24(45):10280–7.

    Article  PubMed  CAS  Google Scholar 

  84. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chang Y-J, Yang C-H, Liang Y-C, Yeh C-M, Huang C-C, Hsu K-S. Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor β. Hippocampus. 2009;19:1142–50.

    Article  PubMed  CAS  Google Scholar 

  86. Bale TL, Epperson CN. Sex differences and stress across the lifespan. Nat Neurosci. 2015;18(10):1413–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13:769–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14:417–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Michopoulos V, Rothbaum AO, Corwin E, Bradley B, Ressler KJ, Jovanovic T. Psychophysiology and posttraumatic stress disorder symptom profile in pregnant African-American women with trauma exposure. Arch Women’s Ment Health. 2015;18(4):639–48. https://doi.org/10.1007/s00737-014-0467-y.

    Article  Google Scholar 

  90. Milad MR, Zeidan MA, Contero A, Pitman RK, Klibanski A, Rauch SL, et al. The influence of gonadal hormones on conditioned fear extinction in healthy humans. Neuroscience. 2010;168(3):652–8. https://doi.org/10.1016/j.neuroscience.2010.04.030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. • Hwang MJ, Zsido RG, Song H, Pace-Schott EF, Miller KK, Lebron-Milad K, et al. Contribution of estradiol levels and hormonal contraceptives to sex differences within the fear network during fear conditioning and extinction. BMC Psychiatry. 2015;15:295. This study found that women with higher levels of estradiol have greater activations of sub regions of the insular and cingulate cortices, amygdala, hippocampus, and hypothalamus during conditioning, extinction, and recall. These results suggest the need to consider gonadal hormone levels and reproductive status/phase in women in order to avoid overlooking sex differences when examining the neurobiology of emotional regulation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Graham BM, Milad MR. Blockade of estrogen by hormonal contraceptives impairs fear extinction in female rats and women. Biol Psychiatry. 2013;73(4):371–8. https://doi.org/10.1016/j.biopsych.2012.09.01893.

    Article  PubMed  CAS  Google Scholar 

  93. Wegerer M, Kerschbaum H, Blechert J, Wilhelm FH. Low levels of estradiol are associated with elevated conditioned responding during fear extinction and with intrusive memories in daily life. Neurobiol Learn Mem. 2014;116:145–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Beck KD, McLaughlin J, Bergen MT, Cominski TP, Moldow RL, Servatius RJ. Facilitated acquisition of the classically conditioned eyeblink response in women taking oral contraceptives. Behav Pharmacol. 2008;19(8):821–8. https://doi.org/10.1097/FBP.0b013e32831c3b8295.

    Article  PubMed  Google Scholar 

  95. McClure, E.B., Monk, C.S., Nelson, E.S., Zarahn, E., Leibebluft, E., Bilder, R. (2004). A developmental examination of gender differences in brain engagement during evaluation threat. Biol Psychiatry, 55(11): 1047–1055. 96. Fear-related activity in subgenual anterior cingulate differs between men and women.

  96. Butler T, Pan H, Epsiein J, Protopopescu X, Tuescher O, Goldstein M, et al. Fear-related activity in subgenual anterior cingulate differs between men and women. Neuroreport. 2005;16(11):1233–6.

    Article  PubMed  Google Scholar 

  97. Wager TD, Phan KL, Liberzon I, Taylor SF. Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. NeuroImage. 2003;19(3):513–31.

    Article  PubMed  Google Scholar 

  98. Felmingham K, Williams LM, Kemp AH, Liddell B, Falconer E, Peduto A, et al. Neural responses to masked fear faces: sex differences and trauma exposure in posttraumatic stress disorder. J Abnorm Psychol. 2010;119(1):241–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The editors would like to thank Dr. Susan Kornstein for taking the time to review this article.

Funding

Kornfield: NIMH K23MH102360; Hantsoo: NIMH K23MH107831, Brain & Behavior Research Foundation NARSAD Young Investigator Award; Epperson: NIMH and Office of Research on Women’s Health P50MH099910, NICHD K12HD085848.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara L. Kornfield.

Ethics declarations

Conflict of Interest

Sara L. Kornfield declares no potential conflicts of interest.

Liisa Hantsoo and C. Neill Epperson are section editors for Current Psychiatry Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sex and Gender Issues in Behavioral Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornfield, S.L., Hantsoo, L. & Epperson, C.N. What Does Sex Have to Do with It? The Role of Sex as a Biological Variable in the Development of Posttraumatic Stress Disorder. Curr Psychiatry Rep 20, 39 (2018). https://doi.org/10.1007/s11920-018-0907-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-018-0907-x

Keywords

Navigation