Skip to main content

Advertisement

Log in

Eating Disorders and the Intestinal Microbiota: Mechanisms of Energy Homeostasis and Behavioral Influence

  • Eating Disorders (S Wonderlich and JM Lavender, Section Editors)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We reviewed and evaluated recently published scientific studies that explored the role of the intestinal microbiota in eating disorders.

Recent Findings

Studies have demonstrated that the intestinal microbiota is a contributing factor to both host energy homeostasis and behavior—two traits commonly disrupted in patients with eating disorders. To date, intestinal microbiota research in eating disorders has focused solely on anorexia nervosa (AN). Initial studies have reported an atypical intestinal microbial composition in patients with AN compared to healthy controls. However, the impact of these AN-associated microbial communities on host metabolism and behavior remains unknown.

Summary

The intriguing pattern of findings in patients with AN encourages further investigation of the intestinal microbiota in eating disorders. Elucidating the specific role(s) of these microbial communities may yield novel ideas for augmenting current clinical therapies to promote weight gain, decrease gastrointestinal distress, and even reduce psychological symptomatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. American Psychiatric Association. Feeding and eating disorders. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC; 2013.

  2. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One. 2009;4(9):e7125. doi:10.1371/journal.pone.0007125.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pfleiderer A, Lagier JC, Armougom F, Robert C, Vialettes B, Raoult D. Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. Eur J Clin Microbiol Infectious Dis: Off Publ Eur Soc Clin Microbiol. 2013;32(11):1471–81. doi:10.1007/s10096-013-1900-2.

    Article  CAS  Google Scholar 

  4. • Kleiman SC, Watson HJ, Bulik-Sullivan EC, Huh EY, Tarantino LM, Bulik CM, et al. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom Med. 2015;77(9):969–81. doi:10.1097/psy.0000000000000247. The first study to report a microbial dysbiosis in patients with AN using high-throughput sequencing techniques

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morita C, Tsuji H, Hata T, Gondo M, Takakura S, Kawai K, et al. Gut dysbiosis in patients with anorexia nervosa. PLoS One. 2015;10(12):e0145274. doi:10.1371/journal.pone.0145274.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mack I, Cuntz U, Gramer C, Niedermaier S, Pohl C, Schwiertz A, et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci Rep. 2016;6:26752. doi:10.1038/srep26752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hudson JI, Hiripi E, Pope HG Jr, Kessler RC. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry. 2007;61(3):348–58. doi:10.1016/j.biopsych.2006.03.040.

    Article  PubMed  Google Scholar 

  8. Zipfel S, Giel KE, Bulik CM, Hay P, Schmidt U. Anorexia nervosa: Aetiology, assessment, and treatment. Lancet Psychiatr. 2015;2(12):1099–111. doi:10.1016/s2215-0366(15)00356-9.

    Article  Google Scholar 

  9. Arcelus J, Mitchell AJ, Wales J, Nielsen S. Mortality rates in patients with anorexia nervosa and other eating disorders: a meta-analysis of 36 studies. Arch Gen Psychiatry. 2011;68(7):724–31. doi:10.1001/archgenpsychiatry.2011.74.

    Article  PubMed  Google Scholar 

  10. Zipfel S, Lowe B, Reas DL, Deter HC, Herzog W. Long-term prognosis in anorexia nervosa: lessons from a 21-year follow-up study. Lancet (London, England). 2000;355(9205):721–2. doi:10.1016/s0140-6736(99)05363-5.

    Article  CAS  Google Scholar 

  11. Waldholtz BD, Andersen AE. Gastrointestinal symptoms in anorexia nervosa. A prospective study. Gastroenterology. 1990;98(6):1415–9.

    Article  CAS  PubMed  Google Scholar 

  12. National Collaborating Centre for Mental Health. National Institute for Health and Clinical Excellence: Guidance. In: Eating Disorders: Core Interventions in the Treatment and Management of Anorexia Nervosa, Bulimia Nervosa and Related Eating Disorders. Leicester (UK): The British Psychological Society & The Royal College of Psychiatrists; 2004.

  13. American Psychiatric Association. Treatment of patients with eating disorders, 3rd ed. Am J Psychiatry. 2006;163(7 Suppl):4–54.

    Google Scholar 

  14. Sato Y, Fukudo S. Gastrointestinal symptoms and disorders in patients with eating disorders. Clin J Gastroenterol. 2015;8(5):255–63. doi:10.1007/s12328-015-0611-x.

    Article  PubMed  Google Scholar 

  15. Mayer L, Walsh BT, Pierson RN Jr, Heymsfield SB, Gallagher D, Wang J, et al. Body fat redistribution after weight gain in women with anorexia nervosa. Am J Clin Nutr. 2005;81(6):1286–91.

    CAS  PubMed  Google Scholar 

  16. Strober M, Freeman R, Morrell W. The long-term course of severe anorexia nervosa in adolescents: survival analysis of recovery, relapse, and outcome predictors over 10-15 years in a prospective study. Intl J Eating Disorders. 1997;22(4):339–60.

    Article  CAS  Google Scholar 

  17. Boraska V, Franklin CS, Floyd JA, Thornton LM, Huckins LM, Southam L, et al. A genome-wide association study of anorexia nervosa. Mol Psychiatry. 2014;19(10):1085–94. doi:10.1038/mp.2013.187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinney A, Kesselmeier M, Jall S, Volckmar AL, Focker M, Antel J, et al. Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index. Mol Psychiatry. 2017;22(2):321–2. doi:10.1038/mp.2016.126.

    Article  CAS  PubMed  Google Scholar 

  19. Garner DM, Garfinkel PE. Socio-cultural factors in the development of anorexia nervosa. Psychol Med. 1980;10(4):647–56.

    Article  CAS  PubMed  Google Scholar 

  20. Proctor LM. The National Institutes of Health Human Microbiome Project. Semin Fetal Neonatal Med. 2016;21(6):368–72. doi:10.1016/j.siny.2016.05.002.

  21. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40. doi:10.1016/j.cell.2016.01.013.

    Article  CAS  PubMed  Google Scholar 

  22. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99. doi:10.1016/j.cell.2014.09.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. doi:10.1073/pnas.1005963107.

    Article  PubMed  PubMed Central  Google Scholar 

  24. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. doi:10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  25. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7. doi:10.1038/nature11053.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–20. doi:10.1136/gutjnl-2013-306541.

    Article  CAS  PubMed  Google Scholar 

  27. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–50. doi:10.1097/mib.0000000000000750.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4554–61. doi:10.1073/pnas.1000087107.

    Article  CAS  PubMed  Google Scholar 

  29. Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015;10(4):e0124599. doi:10.1371/journal.pone.0124599.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152(1–2):39–50. doi:10.1016/j.cell.2012.10.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–60. doi:10.1016/j.cell.2015.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ott SJ, Kuhbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol. 2008;43(7):831–41. doi:10.1080/00365520801935434.

    Article  CAS  PubMed  Google Scholar 

  33. Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev: Off J Eur Cancer Prev Organisation (ECP). 1997;6(Suppl 1):S43–5.

    Article  Google Scholar 

  34. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52. doi:10.1038/nri.2016.42.

    Article  CAS  PubMed  Google Scholar 

  35. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. doi:10.1038/nature11552.

    Article  CAS  PubMed  Google Scholar 

  36. Mayer E. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Med. 2011;12:453–66. doi:10.1038/nrn3071.

    Article  CAS  Google Scholar 

  37. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5. doi:10.1073/pnas.0504978102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science (New York, NY). 2016;351(6275) doi:10.1126/science.aad3311.

  39. Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5. doi:10.1073/pnas.0706625104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6(2):320–9. doi:10.1038/ismej.2011.109.

    Article  CAS  PubMed  Google Scholar 

  41. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell. 2016;167:1469–80. doi:10.1016/j.cell.2016.11.018.

    Article  CAS  PubMed  Google Scholar 

  42. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8(10):e76993. doi:10.1371/journal.pone.0076993.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gustafsson BE, Midtvedt T, Strandberg K. Effects of microbial contamination on the cecum enlargement of germfree rats. Scand J Gastroenterol. 1970;5(4):309–14.

    CAS  PubMed  Google Scholar 

  44. Strandberg K, Sedvall G, Midtvedt T, Gustafsson B. Effect of some biologically active amines on the cecum wall of germfree rats. Proc Soc Exp Biol Med (New York, NY). 1966;121(3):699–702.

    Article  CAS  Google Scholar 

  45. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. doi:10.1073/pnas.0407076101.

    Article  PubMed  PubMed Central  Google Scholar 

  46. • Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science (New York, NY). 2013;341(6150):1241214. doi:10.1126/science.1241214. A seminal investigation demonstrating that obesity is a phenotype transmissible by the intestinal microbiota

    Article  Google Scholar 

  47. Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38. doi:10.1016/j.cmet.2015.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6. doi:10.1038/nature13793.

    CAS  PubMed  Google Scholar 

  49. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6.e7. doi:10.1053/j.gastro.2012.06.031.

    Article  PubMed  Google Scholar 

  50. • Reijnders D, Goossens GH, Hermes GD, Neis EP, van der Beek CM, Most J, et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 2016;24(1):63–74. doi:10.1016/j.cmet.2016.06.016. A human clinical trial reporting that short-term administation of antibiotics decreases intestinal microbial diversity but does not result in improved whole-body energy homeostasis in obese individuals at an 8-week follow-up. Other human clinical trials aimed at manipulating the intestinal microbiota include pre- or probiotic supplementation and fecal microbial transplants

    Article  CAS  PubMed  Google Scholar 

  51. Hiyama T, Yoshihara M, Tanaka S, Haruma K, Chayama K. Effectiveness of prokinetic agents against diseases external to the gastrointestinal tract. J Gastroenterol Hepatol. 2009;24(4):537–46. doi:10.1111/j.1440-1746.2009.05780.x.

    Article  CAS  PubMed  Google Scholar 

  52. Stacher G, Peeters TL, Bergmann H, Wiesnagrotzki S, Schneider C, Granser-Vacariu GV, et al. Erythromycin effects on gastric emptying, antral motility and plasma motilin and pancreatic polypeptide concentrations in anorexia nervosa. Gut. 1993;34(2):166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi:10.1038/nature05414.

    Article  PubMed  Google Scholar 

  54. Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163(6):1360–74. doi:10.1016/j.cell.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  55. Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70(2):567–90.

    CAS  PubMed  Google Scholar 

  56. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–26. doi:10.1016/j.cmet.2011.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol. 2013;305(12):G900–10. doi:10.1152/ajpgi.00265.2013.

    Article  Google Scholar 

  58. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71. doi:10.2337/db11-1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105(43):16767–72. doi:10.1073/pnas.0808567105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50. doi:10.1016/j.cmet.2016.05.005.

    Article  PubMed  Google Scholar 

  61. • Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. 2017; doi:10.1016/j.biopsych.2016.12.031. Continuing this group’s research into the brain-gut-microbiota axis, Burokas et al. treated male wildtype mice with two different kinds of prebiotics (fructooligosaccharides and galactooligosaccharides) for 3 weeks, then assessed changes to a number of biochemical and psychological metrics. The central finding was that prebiotics reduced stress-related symptoms, even in chronically stressed mice

  62. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75. doi:10.1113/jphysiol.2004.063388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609. doi:10.1053/j.gastro.2011.04.052.

    Article  CAS  PubMed  Google Scholar 

  64. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263) doi:10.1126/scitranslmed.3009759.

  65. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52. doi:10.1073/pnas.1010529108.

    Article  PubMed  Google Scholar 

  66. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–65. doi:10.1111/j.1365-2982.2010.01620.x.

    Article  CAS  PubMed  Google Scholar 

  67. Umesaki Y, Setoyama H, Matsumoto S, Okada Y. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology. 1993;79(1):132–7.

    Google Scholar 

  68. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666–73. doi:10.1038/mp.2012.77.

    Article  CAS  PubMed  Google Scholar 

  69. • Hsiao EY, SW MB, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63. doi:10.1016/j.cell.2013.11.024. Research in a mouse model of autism spectrum disorder (ASD) demonstrating the positive effect of treatment with Bacteroides fragilis on numerous characteristics of ASD. The authors also found that treating wildtype mice with a serum metabolite, 4-ethylphenylsulfate (4EPS), that is increased in the ASD mouse model induces behavioral traits similar to those in the ASD mouse

  70. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74(10):720–6. doi:10.1016/j.biopsych.2013.05.001.

    Article  CAS  PubMed  Google Scholar 

  71. Romijn AR, Rucklidge JJ, Kuijer RG, Frampton C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust N Z J Psychiatry. 2017; doi:10.1177/0004867416686694.

  72. Pirbaglou M, de Souza RJ, Stearns JC, Motamed M, Ritvo P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res. 2016;36(9):889–98. doi:10.1016/j.nutres.2016.06.009.

    Article  CAS  PubMed  Google Scholar 

  73. Clarke G, Stilling R, Kennedy P, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–38. doi:10.1210/me.2014-1108.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113:411–7. doi:10.1111/j.1365-2672.2012.05344.x.

    Article  CAS  PubMed  Google Scholar 

  75. Matsumoto M, Kibe R, Ooga T, Aiba Y, Sawaki E, Koga Y, et al. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front Syst Neurosci. 2013;7 doi:10.3389/fnsys.2013.00009.

  76. Özogul F. Production of biogenic amines by Morganella morganii, Klebsiella pneumoniae and Hafnia alvei using a rapid HPLC method. Eur Food Res Technol. 2004;219:465–9. doi:10.1007/s00217-004-0988-0.

    Article  Google Scholar 

  77. Stanaszek PM, Snell JF, O'Neill JJ. Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. Appl Environ Microbiol. 1977;34(2):237–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yano J, Yu K, Donaldson G, Shastri G, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76. doi:10.1016/j.cell.2015.02.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci. 1992;50(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  80. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5. doi:10.1073/pnas.1102999108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pimentel M, Lin HC, Enayati P, van den Burg B, Lee HR, Chen JH, et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am J Physiol Gastrointest Liver Physiol. 2006;290(6):G1089–95. doi:10.1152/ajpgi.00574.2004.

    Article  CAS  PubMed  Google Scholar 

  82. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sinno MH, Do Rego JC, Coeffier M, Bole-Feysot C, Ducrotte P, Gilbert D, et al. Regulation of feeding and anxiety by alpha-MSH reactive autoantibodies. Psychoneuroendocrinology. 2009;34(1):140–9. doi:10.1016/j.psyneuen.2008.08.021.

    Article  CAS  PubMed  Google Scholar 

  84. Tennoune N, Chan P, Breton J, Legrand R, Chabane YN, Akkermann K, et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide alpha-MSH, at the origin of eating disorders. Transl Psychiatry. 2014;4:e458. doi:10.1038/tp.2014.98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Breton J, Legrand R, Akkermann K, Jarv A, Harro J, Dechelotte P, et al. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Intl J Eating Disorders. 2016;49(8):805–8. doi:10.1002/eat.22531.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Carroll.

Ethics declarations

Conflict of Interest

Ian M. Carroll reports a grant from National Institute of Mental Health (R01MH105684). Elaine M. Glenny, Emily C. Bulik-Sullivan, and Quyen Tang report that they are funded from this grant.

Cynthia M. Bulik reports a grant from National Institute of Mental Health (R01MH105684); a grant and personal fees from Shire; textbook royalties from Pearson; and royalties from Walker. Dr. Bulik also acknowledges funding from the Swedish Research Council (VR Dnr: 538-2013-8864).

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Eating Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glenny, E.M., Bulik-Sullivan, E.C., Tang, Q. et al. Eating Disorders and the Intestinal Microbiota: Mechanisms of Energy Homeostasis and Behavioral Influence. Curr Psychiatry Rep 19, 51 (2017). https://doi.org/10.1007/s11920-017-0797-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-017-0797-3

Keywords

Navigation