Skip to main content

Advertisement

Log in

Current State of Biomarkers in Bipolar Disorder

  • Bipolar Disorders (W Coryell, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Bipolar disorder (BD) is a chronic psychiatric illness of which the etiology remains unknown. Extensive research has provided some hypotheses for the pathophysiology of this disorder; however, there are no molecular tests available to help support the diagnosis obtained by self-report and behavioral observations. A major requirement is to identify potential biomarkers that could be used for early diagnosis in patients susceptible to the disease and for its treatment. The most recently published findings regarding alterations in BD were found to be related to oxidative stress, inflammatory and trophic factor deregulation, and also polymorphisms of genes that are associated with the development of BD. Many of these targets are potential biomarkers which could help to identify the BD subgroups and to advance treatment strategies, which would beneficiate the quality of life of these patients. Therefore, the main objective of this review is to examine the recent findings and critically evaluate their potential as biomarkers for BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Frey BN, Andreazza AC, Houenou J, et al. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force. Aust N Z J Psychiatr. 2013;47(4):321–32. This positional report from the ISBD-BIONET explores the most significant data regarding the search and development of potential biomarkers.

    Article  Google Scholar 

  2. Brown NC, Andreazza AC, Young LT. An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res. 2014;218(1–2):61–8. This meta-analysis supports the involvment of oxidative stress in the pathophysiology of bipolar disorder, especially to lipids, DNA and RNA.

    Article  CAS  PubMed  Google Scholar 

  3. Andreazza AC, Young LT. The neurobiology of bipolar disorder: identifying targets for specific agents and synergies for combination treatment. Int J Neuropsychopharmacol. 2014;17(7):1039–52.

  4. Kittel-Schneider S, Weigl J, Volkert J, et al. Further evidence for plasma progranulin as a biomarker in bipolar disorder. J Affect Disord. 2014;157:87–91.

    Article  CAS  PubMed  Google Scholar 

  5. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Clarendon; 2007.

    Google Scholar 

  6. Adam-Vizi V, Starkov AA. Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J Alzheimers Dis. 2010;20 Suppl 2:S413–26.

    PubMed Central  PubMed  Google Scholar 

  7. Scola G, Kim HK, Young LT, et al. A fresh look at complex I in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol Psychiatry. 2013;73:e4–5. This report discusses and emphasises that alterations to the mitochondrial electron transport chain may have an important role in the etiology of bipolar disorder.

    Article  PubMed  Google Scholar 

  8. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–5.

    Article  CAS  PubMed  Google Scholar 

  9. Xing M. Oxidative stress: a new risk factor for thyroid cancer. Endocr Relat Cancer. 2012;19:C7–C11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010;68:261–75.

    Article  CAS  PubMed  Google Scholar 

  11. Wang JF, Shao L, Sun X, et al. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord. 2009;11:523–9.

    Article  CAS  PubMed  Google Scholar 

  12. Che Y, Wang JF, Shao L, et al. Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatry Neurosci. 2010;35:296–302.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Andreazza AC, Shao L, Wang JF, et al. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 2010;67:360–8. In this post-translational study important findings were found to the mitochondrial complex I and identifies potential therapeutic targets for the treatment of bipolar disorder.

    Article  CAS  PubMed  Google Scholar 

  14. Andreazza AC, Wang JF, Salmasi F, et al. Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem. 2013;127(4):552–61.

  15. Machado-Vieira R, Andreazza AC, Viale CI, et al. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett. 2007;421:33–6.

    Article  CAS  PubMed  Google Scholar 

  16. Andreazza AC, Kauer-Sant’anna M, Frey BN, et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord. 2008;111:135–44.

    Article  CAS  PubMed  Google Scholar 

  17. Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, et al. 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci. 2009;34:263–71.

    PubMed Central  PubMed  Google Scholar 

  18. Kapczinski F, Dal-Pizzol F, Teixeira AL, et al. Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res. 2011;45:156–61.

    Article  PubMed  Google Scholar 

  19. Kim HK, Andreazza AC, Yeung PY, et al. Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. J Psychiatry Neurosci. 2014;39:130155.

    Article  Google Scholar 

  20. Aydemir O, Cubukçuo Lu Z, Erdin S, et al. Oxidative stress markers, cognitive functions, and psychosocial functioning in bipolar disorder: an empirical cross-sectional study. Rev Bras Psiquiatr. 2014.

  21. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59:1609–23.

    Article  CAS  PubMed  Google Scholar 

  22. Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–50.

    Article  CAS  PubMed  Google Scholar 

  23. Banerjee U, Dasgupta A, Rout JK, et al. Effects of lithium therapy on Na+-K+-ATPase activity and lipid peroxidation in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37:56–61.

    Article  CAS  PubMed  Google Scholar 

  24. Versace A, Andreazza AC, Young LT, et al. Elevated serum measures of lipid peroxidation and abnormal prefrontal white matter in euthymic bipolar adults: toward peripheral biomarkers of bipolar disorder. Mol Psychiatry. 2013;19(2):200–8. This is one of the first reports regarding the correlation between lipid peroxidation and alterations to white matter.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gergerlioglu HS, Savas HA, Bulbul F, et al. Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:697–702.

    Article  CAS  PubMed  Google Scholar 

  26. Selek S, Savas HA, Gergerlioglu HS, et al. The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord. 2008;107:89–94.

    Article  CAS  PubMed  Google Scholar 

  27. Ozcan ME, Gulec M, Ozerol E, et al. Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol. 2004;19:89–95.

    Article  PubMed  Google Scholar 

  28. Abdolmaleky HM, Cheng KH, Faraone SV, et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15:3132–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. D’Addario C, Dell’Osso B, Palazzo MC, et al. Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII. Neuropsychopharmacology. 2012;37:1647–55.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Huzayyin AA, Andreazza AC, Turecki G, et al. Decreased global methylation in patients with bipolar disorder who respond to lithium. Int J Neuropsychopharmacol. 2014;17:561–9.

    Article  CAS  PubMed  Google Scholar 

  31. Scola G, Kim HK, Young LT, et al. Lithium reduces the effects of rotenone-induced complex I dysfunction on DNA methylation and hydroxymethylation in rat cortical primary neurons. Psychopharmacology (Berl). 2014.

  32. Soeiro-de-Souza MG, Andreazza AC, Carvalho AF, et al. Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder. Int J Neuropsychopharmacol. 2013;16:1505–12.

    Article  CAS  PubMed  Google Scholar 

  33. Mufson EJ, Kroin JS, Sendera TJ, et al. Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases. Prog Neurobiol. 1999;57:451–84.

    Article  CAS  PubMed  Google Scholar 

  34. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10:381–91.

    Article  CAS  PubMed  Google Scholar 

  35. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cunha AB, Frey BN, Andreazza AC, et al. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett. 2006;398:215–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lin PY. State-dependent decrease in levels of brain-derived neurotrophic factor in bipolar disorder: a meta-analytic study. Neurosci Lett. 2009;466:139–43.

    Article  CAS  PubMed  Google Scholar 

  38. Fernandes BS, Gama CS, Ceresér KM, et al. Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis. J Psychiatr Res. 2011;45:995–1004.

    Article  PubMed  Google Scholar 

  39. Rosa AR, Singh N, Whitaker E, et al. Altered plasma glutathione levels in bipolar disorder indicates higher oxidative stress; a possible risk factor for illness onset despite normal brain-derived neurotrophic factor [BDNF] levels. Psychol Med. 2014. 1–10.

  40. Södersten K, Pålsson E, Ishima T, et al. Abnormality in serum levels of mature brain-derived neurotrophic factor [BDNF] and its precursor proBDNF in mood-stabilized patients with bipolar disorder: a study of two independent cohorts. J Affect Disord. 2014;160:1–9. This study suggests that alterations in the conversion of pro to mature BDNF may be associated with the pathophysiology of bipolar disorder.

    Article  PubMed  Google Scholar 

  41. Squassina A, Costa M, Congiu D, et al. Insulin-like growth factor 1 [IGF-1] expression is up-regulated in lymphoblastoid cell lines of lithium responsive bipolar disorder patients. Pharmacol Res. 2013;73:1–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kikuchi K, Iga J, Tayoshi S, et al. Lithium decreases VEGF mRNA expression in leukocytes of healthy subjects and patients with bipolar disorder. Hum Psychopharmacol. 2011;26:358–63.

    Article  CAS  PubMed  Google Scholar 

  43. Palomino A, González-Pinto A, Martinez-Cengotitabengoa M, et al. Relationship between negative symptoms and plasma levels of insulin-like growth factor 1 in first-episode schizophrenia and bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:29–33.

    Article  CAS  PubMed  Google Scholar 

  44. Pereira AC, McQuillin A, Puri V, et al. Genetic association and sequencing of the insulin-like growth factor 1 gene in bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156:177–87.

    Article  PubMed  Google Scholar 

  45. Fournier NM, Lee B, Banasr M, et al. Vascular endothelial growth factor regulates adult hippocampal cell proliferation through MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology. 2012;63:642–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Nowacka MM, Obuchowicz E. Vascular endothelial growth factor [VEGF] and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides. 2012;46:1–10.

    Article  CAS  PubMed  Google Scholar 

  47. Takebayashi M, Hashimoto R, Hisaoka K, et al. Plasma levels of vascular endothelial growth factor and fibroblast growth factor 2 in patients with major depressive disorders. J Neural Transm. 2010;117:1119–22.

    Article  CAS  PubMed  Google Scholar 

  48. Iga J, Ueno S, Yamauchi K, et al. Gene expression and association analysis of vascular endothelial growth factor in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:658–63.

    Article  CAS  PubMed  Google Scholar 

  49. Isung J, Mobarrez F, Nordström P, et al. Low plasma vascular endothelial growth factor [VEGF] associated with completed suicide. World J Biol Psychiatry. 2012;13:468–73.

    Article  PubMed  Google Scholar 

  50. Lee BH, Kim YK. Increased plasma VEGF levels in major depressive or manic episodes in patients with mood disorders. J Affect Disord. 2012;136:181–4.

    Article  CAS  PubMed  Google Scholar 

  51. Shibata T, Yamagata H, Uchida S, et al. The alteration of hypoxia inducible factor-1 [HIF-1] and its target genes in mood disorder patients. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:222–9.

    Article  CAS  PubMed  Google Scholar 

  52. Goldstein BI, Fagiolini A, Houck P, et al. Cardiovascular disease and hypertension among adults with bipolar I disorder in the United States. Bipolar Disord. 2009;11:657–62.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Leboyer M, Soreca I, Scott J, et al. Can bipolar disorder be viewed as a multi-system inflammatory disease? J Affect Disord. 2012;141:1–10.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Stuart MJ, Baune BT. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev. 2014;42C:93–115.

    Article  Google Scholar 

  55. Munkholm K, Braüner JV, Kessing LV, et al. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res. 2013;47:1119–33.

    Article  PubMed  Google Scholar 

  56. Rao JS, Harry GJ, Rapoport SI, et al. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry. 2010;15:384–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Brietzke E, Stabellini R, Grassis-Oliveira R, et al. Cytokines in bipolar disorder: recent findings, deleterious effects but promise for future therapeutics. CNS Spectr. 2011;16:157–68.

    Article  PubMed  Google Scholar 

  58. Hope S, Dieset I, Agartz I, et al. Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res. 2011;45(12):1608–16.

  59. Drexhage RC, Knijff EM, Padmos RC, et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother. 2010;10:59–76.

    Article  CAS  PubMed  Google Scholar 

  60. Herberth M, Koethe D, Levin Y, et al. Peripheral profiling analysis for bipolar disorder reveals markers associated with reduced cell survival. Proteomics. 2011;11:94–105.

    Article  CAS  PubMed  Google Scholar 

  61. Goldstein BI, Collinger KA, Lotrich F, et al. Preliminary findings regarding proinflammatory markers and brain-derived neurotrophic factor among adolescents with bipolar spectrum disorders. J Child Adolesc Psychopharmacol. 2011;21:479–84. This report addresses novel evidence regarding biomarkers among adolescents with bipolar disorder.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Zell R, Geck P, Werdan K, et al. TNF-alpha and IL-1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem. 1997;177:61–7.

    Article  CAS  PubMed  Google Scholar 

  63. Behrens MM, Ali SS, Dugan LL. Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci. 2008;28:13957–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Alsaif M, Guest PC, Schwarz E, et al. Analysis of serum and plasma identifies differences in molecular coverage, measurement variability, and candidate biomarker selection. Proteomics Clin Appl. 2012;6:297–303.

    Article  CAS  PubMed  Google Scholar 

  65. Zheng P, Chen JJ, Huang T, et al. A novel urinary metabolite signature for diagnosing major depressive disorder. J Proteome Res. 2013;12:5904–11.

    Article  CAS  PubMed  Google Scholar 

  66. Zheng P, Dong Wei. YD, Yao G, et al. Novel urinary biomarkers for diagnosing bipolar disorder. Metabolomics. Springer; 2013.

  67. Xu XJ, Zheng P, Ren GP, et al. 2,4-Dihydroxypyrimidine is a potential urinary metabolite biomarker for diagnosing bipolar disorder. Mol Biosyst. 2014;10:813–9.

    Article  CAS  PubMed  Google Scholar 

  68. Hahn C, Lim HK, Lee CU. Neuroimaging findings in late-onset schizophrenia and bipolar disorder. J Geriatr Psychiatry Neurol. 2014;27:56–62.

    Article  PubMed  Google Scholar 

  69. Huang SH, Tsai SY, Hsu JL, et al. Volumetric reduction in various cortical regions of elderly patients with early-onset and late-onset mania. Int Psychogeriatr. 2011;23:149–54.

    Article  PubMed  Google Scholar 

  70. Haller S, Xekardaki A, Delaloye C, et al. Combined analysis of grey matter voxel-based morphometry and white matter tract-based spatial statistics in late-life bipolar disorder. J Psychiatry Neurosci. 2011;36:391–401.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171(8):829–43. This positional report discusses the limitations of neuroimaging studies and suggests new approaches to guide diagnosis and treatment for patients with bipolar disorder.

  72. Nurnberger JI, Koller DL, Jung J, et al. Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry. 2014;71:657–64.

    Article  CAS  PubMed  Google Scholar 

  73. Group PGCBDW. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011;43(10):977–83.

  74. Fiorentino A, O’Brien NL, Locke DP, et al. Analysis of ANK3 and CACNA1C variants identified in bipolar disorder whole genome sequence data. Bipolar Disord. 2014;16:583–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Erk S, Meyer-Lindenberg A, Linden DE, et al. Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. Neuroimage. 2014;94:147–54.

    Article  CAS  PubMed  Google Scholar 

  76. Rong H, Liu TB, Yang KJ, et al. MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res. 2011;45:92–5.

    Article  PubMed  Google Scholar 

  77. Nurnberger JI, McInnis M, Reich W, et al. A high-risk study of bipolar disorder. Childhood clinical phenotypes as precursors of major mood disorders. Arch Gen Psychiatry. 2011;68:1012–20.

    Article  PubMed  Google Scholar 

  78. Duffy A, Alda M, Hajek T, et al. Early stages in the development of bipolar disorder. J Affect Disord. 2010;121:127–35.

    Article  PubMed  Google Scholar 

  79. Rasic D, Hajek T, Alda M, et al. Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: a meta-analysis of family high-risk studies. Schizophr Bull. 2014;40:28–38.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the CAMH Foundation and Canadian Institutes of Health Research as sources of funding in support of this report.

Compliance with Ethics Guidelines

Conflict of Interest

Gustavo Scola and Ana Cristina Andreazza have received an operating grant from the Canadian Institutes of Health Research.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cristina Andreazza.

Additional information

This article is part of the Topical Collection on Bipolar Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scola, G., Andreazza, A.C. Current State of Biomarkers in Bipolar Disorder. Curr Psychiatry Rep 16, 514 (2014). https://doi.org/10.1007/s11920-014-0514-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-014-0514-4

Keywords

Navigation