Skip to main content

Advertisement

Log in

Neuromodulation Interventions for the Treatment of Painful Diabetic Neuropathy: a Systematic Review

  • Neuromodulation (A Abd-Elsayed, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Painful diabetic neuropathy (PDN) is a prevalent and debilitating condition, characterized by severe burning, tingling, and lancinating pain usually located in the distal lower extremities. In addition to manifesting with severe pain, PDN may also be associated with poor quality of life and sleep, mood disorders, burns, falls, and social withdrawal. The authors appraised the current body of literature for evidence on neuromodulation interventions for PDN.

Recent Findings

In patients with refractory PDN unresponsive to conventional medical management (glucose optimization and oral analgesic medications), there is level I evidence supporting the use of 10-kHz and tonic dorsal column spinal cord stimulation (SCS). Included studies reported significant associations between 10-kHz and tonic dorsal column SCS and superior analgesic outcomes, physical functioning, and patient satisfaction. Current level of evidence remains limited for other modalities of neuromodulation for PDN including burst SCS (level II-3), dorsal root ganglion SCS (level III), and peripheral nerve stimulation (level II-3). Some studies reported improvements in neurological physical examination, sensory testing, and/or reflex testing in patients undergoing 10-kHz SCS for treatment of PDN.

Summary

In summary, the purpose of this review is to equip provider with important updates on the use of neuromodulation interventions for the treatment of PDN that is refractory to conventional medical therapy, with current level I evidence supporting use of 10-kHz and tonic SCS for PDN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kerner W, Brückel J, Association GD. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122(7):384–6. https://doi.org/10.1055/s-0034-1366278.

    Article  CAS  PubMed  Google Scholar 

  2. Hicks CW, Selvin E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr Diab Rep. 2019;19(10):86. https://doi.org/10.1007/s11892-019-1212-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54. https://doi.org/10.2337/dc16-2042.

    Article  CAS  PubMed  Google Scholar 

  4. Gorson KC, Schott C, Herman R, Ropper AH, Rand WM. Gabapentin in the treatment of painful diabetic neuropathy: a placebo controlled, double blind, crossover trial. J Neurol Neurosurg Psychiatry. 1999;66(2):251–2. https://doi.org/10.1136/jnnp.66.2.251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Majdinasab N, Kaveyani H, Azizi M. A comparative double-blind randomized study on the effectiveness of duloxetine and gabapentin on painful diabetic peripheral polyneuropathy. Drug Des Devel Ther. 2019;13:1985–92. https://doi.org/10.2147/DDDT.S185995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blair HA. Capsaicin 8% dermal patch: a review in peripheral neuropathic pain. Drugs. 2018;78(14):1489–500. https://doi.org/10.1007/s40265-018-0982-7.

    Article  CAS  PubMed  Google Scholar 

  7. van Nooten F, Trundell D, Staniewska D, Chen J, Davies EW, Revicki DA. Evaluating the measurement properties of the self-assessment of treatment version II, follow-up version, in patients with painful diabetic peripheral neuropathy. Pain Res Treat. 2017;2017:6080648. https://doi.org/10.1155/2017/6080648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hagedorn JM, Pittelkow TP, Hunt CL, D’Souza RS, Lamer TJ. Current perspectives on spinal cord stimulation for the treatment of cancer pain. J Pain Res. 2020;13:3295–305. https://doi.org/10.2147/JPR.S263857.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deer TR, Grider JS, Lamer TJ, et al. A systematic literature review of spine neurostimulation therapies for the treatment of pain. Pain Med. 2020;21(7):1421–32. https://doi.org/10.1093/pm/pnz353.

    Article  PubMed  Google Scholar 

  10. Klomp HM, Steyerberg EW, Habbema JD, van Urk H, Group ES. What is the evidence on efficacy of spinal cord stimulation in (subgroups of) patients with critical limb ischemia? Ann Vasc Surg. 2009;23(3):355–63. https://doi.org/10.1016/j.avsg.2008.08.016.

  11. Page MJ, Shamseer L, Tricco AC. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst Rev. 2018;7(1):32. https://doi.org/10.1186/s13643-018-0699-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-34. https://doi.org/10.1016/j.jclinepi.2009.06.006.

    Article  PubMed  Google Scholar 

  13. Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

  14. Wells GA, Shea B, O'Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta‐analyses. The Ottawa Hospital Research Institute: Ottawa, Canada. 2013;1–4.

  15. Harris RP, Helfand M, Woolf SH, et al. Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med. 2001;20(3 Suppl):21–35. https://doi.org/10.1016/s0749-3797(01)00261-6.

    Article  CAS  PubMed  Google Scholar 

  16. Abd-Elsayed A, Schiavoni N, Sachdeva H. Efficacy of spinal cord stimulators in treating peripheral neuropathy: a case series. J Clin Anesth. 2016;28:74–7. https://doi.org/10.1016/j.jclinane.2015.08.011.

    Article  PubMed  Google Scholar 

  17. Daousi C, Benbow SJ, MacFarlane IA. Electrical spinal cord stimulation in the long-term treatment of chronic painful diabetic neuropathy. Diabet Med. 2005;22(4):393–8. https://doi.org/10.1111/j.1464-5491.2004.01410.x.

    Article  CAS  PubMed  Google Scholar 

  18. de Vos CC, Bom MJ, Vanneste S, Lenders MW, de Ridder D. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation. 2014;17(2):152–9. https://doi.org/10.1111/ner.12116.

    Article  PubMed  Google Scholar 

  19. de Vos CC, Rajan V, Steenbergen W, van der Aa HE, Buschman HP. Effect and safety of spinal cord stimulation for treatment of chronic pain caused by diabetic neuropathy. J Diabetes Complications. 2009;23(1):40–5. https://doi.org/10.1016/j.jdiacomp.2007.08.002.

    Article  PubMed  Google Scholar 

  20. Duarte RV, Andronis L, Lenders MW, de Vos CC. Quality of life increases in patients with painful diabetic neuropathy following treatment with spinal cord stimulation. Qual Life Res. 2016;25(7):1771–7. https://doi.org/10.1007/s11136-015-1211-4.

    Article  PubMed  Google Scholar 

  21. Galan V, Scowcroft J, Chang P, et al. 10-kHz spinal cord stimulation treatment for painful diabetic neuropathy: results from. Pain Manag. 2020;10(5):291–300. https://doi.org/10.2217/pmt-2020-0033.

    Article  PubMed  Google Scholar 

  22. Kinfe TM, Pintea B. The usefulness of spinal cord stimulation for chronic pain due to combined vasospastic prinzmetal angina and diabetic neuropathic pain of the lower limbs. J Neurol Surg A Cent Eur Neurosurg. 2016;77(2):176–8. https://doi.org/10.1055/s-0034-1543960.

    Article  PubMed  Google Scholar 

  23. Petersen EA, Stauss TG, Scowcroft JA, et al. Effect of high-frequency (10-kHz) spinal cord stimulation in patients with painful diabetic neuropathy: a randomized clinical trial. JAMA Neurol. 2021;78(6):687–98. https://doi.org/10.1001/jamaneurol.2021.0538.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pluijms WA, Slangen R, Bakkers M, et al. Pain relief and quality-of-life improvement after spinal cord stimulation in painful diabetic polyneuropathy: a pilot study. Br J Anaesth. 2012;109(4):623–9. https://doi.org/10.1093/bja/aes251.

    Article  CAS  PubMed  Google Scholar 

  25. Sills S. Treatment of painful polyneuropathies of diabetic and other origins with 10 kHz SCS: a case series. Postgrad Med. 2020;132(4):352–7. https://doi.org/10.1080/00325481.2020.1732065.

    Article  PubMed  Google Scholar 

  26. Slangen R, Schaper NC, Faber CG, et al. Spinal cord stimulation and pain relief in painful diabetic peripheral neuropathy: a prospective two-center randomized controlled trial. Diabetes Care. 2014;37(11):3016–24. https://doi.org/10.2337/dc14-0684.

    Article  PubMed  Google Scholar 

  27. Tesfaye S, Watt J, Benbow SJ, Pang KA, Miles J, MacFarlane IA. Electrical spinal-cord stimulation for painful diabetic peripheral neuropathy. Lancet. 1996;348(9043):1698–701. https://doi.org/10.1016/S0140-6736(96)02467-1.

    Article  CAS  PubMed  Google Scholar 

  28. van Beek M, Geurts JW, Slangen R, et al. Severity of neuropathy is associated with long-term spinal cord stimulation outcome in painful diabetic peripheral neuropathy: five-year follow-up of a prospective two-center clinical trial. Diabetes Care. 2018;41(1):32–8. https://doi.org/10.2337/dc17-0983.

    Article  PubMed  Google Scholar 

  29. de Vos CC, Meier K, Zaalberg PB, et al. Spinal cord stimulation in patients with painful diabetic neuropathy: a multicentre randomized clinical trial. Pain. 2014;155(11):2426–31. https://doi.org/10.1016/j.pain.2014.08.031.

    Article  PubMed  Google Scholar 

  30. Chapman KB, Van Roosendaal BW, Van Helmond N, Yousef TA. Unilateral dorsal root ganglion stimulation lead placement with resolution of bilateral lower extremity symptoms in diabetic peripheral neuropathy. Cureus. 2020;12(9):e10735. https://doi.org/10.7759/cureus.10735.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eldabe S, Espinet A, Wahlstedt A, et al. Retrospective case series on the treatment of painful diabetic peripheral neuropathy with dorsal root ganglion stimulation. Neuromodulation. 2018;21(8):787–92. https://doi.org/10.1111/ner.12767.

    Article  PubMed  Google Scholar 

  32. Falowski S, Pope JE, Raza A. Early US experience with stimulation of the dorsal root ganglia for the treatment of peripheral neuropathy in the lower extremities: a multicenter retrospective case series. Neuromodulation. 2019;22(1):96–100. https://doi.org/10.1111/ner.12860.

    Article  PubMed  Google Scholar 

  33. Dabby R, Sadeh M, Goldberg I, Finkelshtein V. Electrical stimulation of the posterior tibial nerve reduces neuropathic pain in patients with polyneuropathy. J Pain Res. 2017;10:2717–23. https://doi.org/10.2147/JPR.S137420.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sokal P, Harat M, Zieliński P, Kierońska S. Tibial nerve stimulation with a miniature, wireless stimulator in chronic peripheral neuropathic pain. J Pain Res. 2017;10:613–9. https://doi.org/10.2147/JPR.S128861.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zeno A, Handler SJ, Jakus-Waldman S, Yazdany T, Nguyen JN. Percutaneous tibial nerve stimulation in diabetic and nondiabetic women with overactive bladder syndrome: a retrospective cohort study. Female Pelvic Med Reconstr Surg. 2021. https://doi.org/10.1097/SPV.0000000000001036.

  36. D’Souza RS, Strand N. Neuromodulation with burst and tonic stimulation decreases opioid consumption: a post hoc analysis of the success using neuromodulation with BURST (SUNBURST) randomized controlled trial. Neuromodulation. 2021;24(1):135–41. https://doi.org/10.1111/ner.13273.

    Article  PubMed  Google Scholar 

  37. Staudt MD, Prabhala T, Sheldon BL, et al. Current strategies for the management of painful diabetic neuropathy. J Diabetes Sci Technol. 2020:1932296820951829. https://doi.org/10.1177/1932296820951829

  38. Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Prescription of long-acting opioids and mortality in patients with chronic noncancer pain. JAMA. 2016;315(22):2415–23. https://doi.org/10.1001/jama.2016.7789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. D'Souza RS, Eldrige JS. Prescription drug monitoring program. StatPearls. StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC. 2020.

  40. D’Souza RS, Hagedorn JM. Anticoagulation use during dorsal column spinal cord stimulation trial. Pain Med. 2020. https://doi.org/10.1093/pm/pnaa244.

    Article  PubMed  Google Scholar 

  41. Dombovy-Johnson ML, D'Souza RS, Thuc Ha C, Hagedorn JM. Incidence and risk factors for spinal cord stimulator lead migration with or without loss of efficacy: a retrospective review of 91 consecutive thoracic lead implants. Neuromodulation: Technology at the Neural Interface. n/a(n/a). https://doi.org/10.1111/ner.13487.

  42. D'Souza RS, Hunt CL. A rare case of anchor fracture manifesting with new-onset neuropathic pain after spinal cord stimulator implantation. Neuromodulation. 2021. https://doi.org/10.1111/ner.13530.

  43. D'Souza R, Olatoye O, Butler C, Barman R, Ashmore Z, Hagedorn J. Adverse events associated with 10-kHz dorsal column spinal cord stimulation: a five-year analysis of the manufacturer and user facility device experience (MAUDE) database. Clin J Pain. 2021;in press.

  44. van Beek M, Hermes D, Honig WM, et al. Long-term spinal cord stimulation alleviates mechanical hypersensitivity and increases peripheral cutaneous blood perfusion in experimental painful diabetic polyneuropathy. Neuromodulation. 2018;21(5):472–9. https://doi.org/10.1111/ner.12757.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mor A, Dekkers OM, Nielsen JS, Beck-Nielsen H, Sørensen HT, Thomsen RW. Impact of glycemic control on risk of infections in patients with type 2 diabetes: a population-based cohort study. Am J Epidemiol. 2017;186(2):227–36. https://doi.org/10.1093/aje/kwx049.

    Article  PubMed  Google Scholar 

  46. Martin ET, Kaye KS, Knott C, et al. Diabetes and risk of surgical site infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2016;37(1):88–99. https://doi.org/10.1017/ice.2015.249.

    Article  PubMed  Google Scholar 

  47. Cancienne JM, Werner BC, Browne JA. Is there an association between hemoglobin A1C and deep postoperative infection after TKA? Clin Orthop Relat Res. 2017;475(6):1642–9. https://doi.org/10.1007/s11999-017-5246-4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Harris AH, Bowe TR, Gupta S, Ellerbe LS, Giori NJ. Hemoglobin A1C as a marker for surgical risk in diabetic patients undergoing total joint arthroplasty. J Arthroplasty. 2013;28(8 Suppl):25–9. https://doi.org/10.1016/j.arth.2013.03.033.

    Article  PubMed  Google Scholar 

  49. Cancienne JM, Werner BC, Chen DQ, Hassanzadeh H, Shimer AL. Perioperative hemoglobin A1c as a predictor of deep infection following single-level lumbar decompression in patients with diabetes. Spine J. 2017;17(8):1100–5. https://doi.org/10.1016/j.spinee.2017.03.017.

    Article  PubMed  Google Scholar 

  50. Iorio R, Williams KM, Marcantonio AJ, Specht LM, Tilzey JF, Healy WL. Diabetes mellitus, hemoglobin A1C, and the incidence of total joint arthroplasty infection. J Arthroplasty. 2012;27(5):726-9.e1. https://doi.org/10.1016/j.arth.2011.09.013.

    Article  PubMed  Google Scholar 

  51. Hagedorn JM, McArdle I, D’Souza RS, Yadav A, Engle AM, Deer TR. Effect of patient characteristics on clinical outcomes more than 12 months following dorsal root ganglion stimulation implantation: a retrospective review. Neuromodulation. 2021. https://doi.org/10.1111/ner.13326.

    Article  PubMed  Google Scholar 

  52. Skaribas IM, Peccora C, Skaribas E. Single S1 dorsal root ganglia stimulation for intractable complex regional pain syndrome foot pain after lumbar spine surgery: a case series. Neuromodulation. 2019;22(1):101–7. https://doi.org/10.1111/ner.12780.

    Article  PubMed  Google Scholar 

  53. Langford B, Mauck WD. Advancement in neuromodulation technology with the innovation of design-specific peripheral nerve stimulators: sural nerve stimulation for radiculopathy. Pain Med. 2020;21(6):1297–300. https://doi.org/10.1093/pm/pnaa077.

    Article  PubMed  Google Scholar 

  54. Strand NH, D’Souza R, Wie C, et al. Mechanism of action of peripheral nerve stimulation. Curr Pain Headache Rep. 2021;25(7):47. https://doi.org/10.1007/s11916-021-00962-3.

    Article  PubMed  Google Scholar 

  55. Langford B, Hooten WM, D’Souza S, Moeschler S, D’Souza RS. YouTube as a source of medical information about spinal cord stimulation. Neuromodulation. 2020. https://doi.org/10.1111/ner.13303.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Cynthia J. Beeler, M.L.S., AHIP for assisting with the formal search strategy utilized in this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Abd-Elsayed.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuromodulation

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Souza, R.S., Langford, B., Dombovy-Johnson, M. et al. Neuromodulation Interventions for the Treatment of Painful Diabetic Neuropathy: a Systematic Review. Curr Pain Headache Rep 26, 365–377 (2022). https://doi.org/10.1007/s11916-022-01035-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-022-01035-9

Keywords

Navigation