Skip to main content

Advertisement

Log in

Understanding Early-Stage Posttraumatic Osteoarthritis for Future Prospects of Diagnosis: from Knee to Temporomandibular Joint

  • Craniofacial Skeleton (TG Chu and S Akintoye, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Many mechanical load-bearing joints of the body are prone to posttraumatic osteoarthritis (PTOA), including the knee joint and temporomandibular joint (TMJ). Early detection of PTOA can be beneficial in prevention or alleviating further progression of the disease.

Recent Findings

Various mouse models, similar to those used in development of novel diagnosis strategies for early stages of OA, have been proposed to study early PTOA. While many studies have focused on OA and PTOA in the knee joint, early diagnostic methods for OA and PTOA of the TMJ are still not well established. Previously, we showed that fluorescent near-infrared imaging can diagnose inflammation and cartilage damage in mouse models of knee PTOA. Here we propose that the same approach can be used for early diagnosis of TMJ-PTOA.

Summary

In this review, we present a brief overview of PTOA, application of relevant mouse models, current imaging methods available to examine TMJ-PTOA, and the prospects of near-infrared optical imaging to diagnose early-stage TMJ-OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Kim DG, et al. Sex dependent mechanical properties of the human mandibular condyle. J Mech Behav Biomed Mater. 2017;71:184–91 This study shows the mechanical behavior of the cartilage-subchondral bone and it is related to the subchondral bone properties including tissue mineral density and trabecular morphological parameters.

    Article  PubMed  Google Scholar 

  2. Decker RS, Koyama E, Pacifici M. Articular cartilage: structural and developmental intricacies and questions. Curr Osteoporos Rep. 2015;13(6):407–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.

    CAS  PubMed  Google Scholar 

  5. Chu CR, Williams AA, Coyle CH, Bowers ME. Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res Ther. 2012;14(3):212.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yokota H, Leong DJ, Sun HB. Mechanical loading: bone remodeling and cartilage maintenance. Curr Osteoporos Rep. 2011;9(4):237–42.

    Article  PubMed  Google Scholar 

  7. Quinn JH, Bazan NG. Identification of prostaglandin E2 and leukotriene B4 in the synovial fluid of painful, dysfunctional temporomandibular joints. J Oral Maxillofac Surg. 1990;48(9):968–71.

    Article  CAS  PubMed  Google Scholar 

  8. Holmlund A, et al. Concentrations of neuropeptides substance P, neurokinin A, calcitonin gene-related peptide, neuropeptide Y and vasoactive intestinal polypeptide in synovial fluid of the human temporomandibular joint. A correlation with symptoms, signs and arthroscopic findings. Int J Oral Maxillofac Surg. 1991;20(4):228–31.

    Article  CAS  PubMed  Google Scholar 

  9. Herring SW. TMJ anatomy and animal models. J Musculoskelet Neuronal Interact. 2003;3(4):391–4 discussion 406-7.

    CAS  PubMed  Google Scholar 

  10. Kim DG, Jeong YH, Kosel E, Agnew AM, McComb DW, Bodnyk K, et al. Regional variation of bone tissue properties at the human mandibular condyle. Bone. 2015;77:98–106.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Coogan JS, Kim DG, Bredbenner TL, Nicolella DP. Determination of sex differences of human cadaveric mandibular condyles using statistical shape and trait modeling. Bone. 2018;106:35–41.

    Article  PubMed  Google Scholar 

  12. Bag AK, et al. Imaging of the temporomandibular joint: an update. World J Radiol. 2014;6(8):567–82.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ohrbach R, Dworkin SF. The Evolution of TMD Diagnosis: Past, Present, Future. J Dent Res. 2016;95(10):1093–101.

  14. Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J Craniomandib Disord. 1992;6(4):301–55.

    CAS  PubMed  Google Scholar 

  15. Boyan BD, Tosi LL, Coutts RD, Enoka RM, Hart DA, Nicolella DP, et al. Addressing the gaps: sex differences in osteoarthritis of the knee. Biol Sex Differ. 2013;4(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. LeResche L. Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit Rev Oral Biol Med. 1997;8(3):291–305.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao YP, Zhang ZY, Wu YT, Zhang WL, Ma XC. Investigation of the clinical and radiographic features of osteoarthrosis of the temporomandibular joints in adolescents and young adults. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(2):e27–34.

    Article  PubMed  Google Scholar 

  18. Kang SC, Lee DG, Choi JH, Kim ST, Kim YK, Ahn HJ. Association between estrogen receptor polymorphism and pain susceptibility in female temporomandibular joint osteoarthritis patients. Int J Oral Maxillofac Surg. 2007;36(5):391–4.

    Article  PubMed  Google Scholar 

  19. Aiken A, Bouloux G, Hudgins P. MR imaging of the temporomandibular joint. Magn Reson Imaging Clin N Am. 2012;20(3):397–412.

    Article  PubMed  Google Scholar 

  20. Guralnick W, Kaban LB, Merrill RG. Temporomandibular-joint afflictions. N Engl J Med. 1978;299(3):123–9.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson DD, Marsh JL, Brown TD. The pathomechanical etiology of post-traumatic osteoarthritis following intraarticular fractures. Iowa Orthop J. 2011;31:1–20.

    PubMed  PubMed Central  Google Scholar 

  22. Lotz MK, Kraus VB. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther. 2010;12(3):211.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20(10):739–44.

    Article  PubMed  Google Scholar 

  25. Muthuri SG, McWilliams DF, Doherty M, Zhang W. History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthr Cartil. 2011;19(11):1286–93.

    Article  CAS  Google Scholar 

  26. Gelber AC, et al. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med. 2000;133(5):321–8.

    Article  CAS  PubMed  Google Scholar 

  27. Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. Body mass index in young men and the risk of subsequent knee and hip osteoarthritis. Am J Med. 1999;107(6):542–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.

    Article  PubMed  Google Scholar 

  29. Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med. 2008;36(9):1717–25.

    Article  PubMed  Google Scholar 

  30. Lohmander LS, Östenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.

    Article  CAS  PubMed  Google Scholar 

  31. Roos H, Adalberth T, Dahlberg L, Lohmander LS. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil. 1995;3(4):261–7.

    Article  CAS  Google Scholar 

  32. Lubowitz JH, Appleby D. Cost-effectiveness analysis of the most common orthopaedic surgery procedures: knee arthroscopy and knee anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(10):1317–22.

    Article  PubMed  Google Scholar 

  33. Gianotti SM, Marshall SW, Hume PA, Bunt L. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J Sci Med Sport. 2009;12(6):622–7.

    Article  PubMed  Google Scholar 

  34. Parkkari J, Pasanen K, Mattila VM, Kannus P, Rimpela A. The risk for a cruciate ligament injury of the knee in adolescents and young adults: a population-based cohort study of 46 500 people with a 9 year follow-up. Br J Sports Med. 2008;42(6):422–6.

    Article  CAS  PubMed  Google Scholar 

  35. Yelin E, Callahan LF. The economic cost and social and psychological impact of musculoskeletal conditions. National Arthritis Data Work Groups. Arthritis Rheum. 1995;38(10):1351–62.

    Article  CAS  PubMed  Google Scholar 

  36. Losina E, Walensky RP, Reichmann WM, Holt HL, Gerlovin H, Solomon DH, et al. Impact of obesity and knee osteoarthritis on morbidity and mortality in older Americans. Ann Intern Med. 2011;154(4):217–26.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol. 2013;9(8):485–97.

    Article  CAS  PubMed  Google Scholar 

  38. •• Christiansen BA, et al. Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthr Cartil. 2015;23(10):1627–38 This review discusses in detail the non-invasive animal models of post-traumatic osteoarthritis. The article covers findings of studies utilizing different methods to induce joint injury. The articles illustrates the significance of non-invasive models to study PTOA at various stages.

    Article  CAS  Google Scholar 

  39. Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016;11:19.

  40. Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res. 2011;29(6):802–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Furman BD, Strand J, Hembree WC, Ward BD, Guilak F, Olson SA. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis. J Orthop Res. 2007;25(5):578–92.

    Article  PubMed  Google Scholar 

  42. Cho H, et al. Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids. Biomed Res Int. 2015;2015:595273.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Poulet B, Hamilton RW, Shefelbine S, Pitsillides AA. Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum. 2011;63(1):137–47.

    Article  PubMed  Google Scholar 

  44. Wu P, Holguin N, Silva MJ, Fu M, Liao W, Sandell LJ. Early response of mouse joint tissue to noninvasive knee injury suggests treatment targets. Arthritis Rheumatol. 2014;66(5):1256–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Christiansen BA, Anderson MJ, Lee CA, Williams JC, Yik JHN, Haudenschild DR. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthr Cartil. 2012;20(7):773–82.

    Article  CAS  Google Scholar 

  46. Alomar X, Medrano J, Cabratosa J, Clavero JA, Lorente M, Serra I, et al. Anatomy of the temporomandibular joint. Semin Ultrasound CT MR. 2007;28(3):170–83.

    Article  CAS  PubMed  Google Scholar 

  47. Piette E. Anatomy of the human temporomandibular joint. An updated comprehensive review. Acta Stomatol Belg. 1993;90(2):103–27.

    CAS  PubMed  Google Scholar 

  48. Vos LM, Kuijer R, Huddleston Slater JJR, Bulstra SK, Stegenga B. Inflammation is more distinct in temporomandibular joint osteoarthritis compared to the knee joint. J Oral Maxillofac Surg. 2014;72(1):35–40.

    Article  PubMed  Google Scholar 

  49. Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. Orthod Craniofacial Res. 2009;12(3):168–77.

    Article  CAS  Google Scholar 

  50. Benjamin M, Ralphs JR. Biology of fibrocartilage cells. Int Rev Cytol. 2004;233:1–45.

    Article  CAS  PubMed  Google Scholar 

  51. Shen G, Darendeliler MA. The adaptive remodeling of condylar cartilage---a transition from chondrogenesis to osteogenesis. J Dent Res. 2005;84(8):691–9.

    Article  CAS  PubMed  Google Scholar 

  52. Merida-Velasco JR, et al. Development of the human temporomandibular joint. Anat Rec. 1999;255(1):20–33.

  53. Liang W, et al. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods. Exp Ther Med. 2016;11(2):481–9.

  54. Xu L, Polur I, Lim C, Servais JM, Dobeck J, Li Y, et al. Early-onset osteoarthritis of mouse temporomandibular joint induced by partial discectomy. Osteoarthr Cartil. 2009;17(7):917–22. https://doi.org/10.1016/j.joca.2009.01.002.

  55. Almarza AJ, Brown BN, Arzi B, Ângelo DF, Chung W, Badylak SF, et al. Preclinical animal models for temporomandibular joint tissue engineering. Tissue Eng Part B Rev. 2018;24(3):171–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Poulet B. Non-invasive loading model of murine osteoarthritis. Curr Rheumatol Rep. 2016;18(7):40.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen J, Sorensen KP, Gupta T, Kilts T, Young M, Wadhwa S. Altered functional loading causes differential effects in the subchondral bone and condylar cartilage in the temporomandibular joint from young mice. Osteoarthr Cartil. 2009;17(3):354–61.

    Article  CAS  Google Scholar 

  58. Bell DM, Leung KKH, Wheatley SC, Ng LJ, Zhou S, Wing Ling K, et al. SOX9 directly regulates the type-II collagen gene. Nat Genet. 1997;16(2):174–8.

    Article  CAS  PubMed  Google Scholar 

  59. Liu YD, Liao LF, Zhang HY, Lu L, Jiao K, Zhang M, et al. Reducing dietary loading decreases mouse temporomandibular joint degradation induced by anterior crossbite prosthesis. Osteoarthr Cartil. 2014;22(2):302–12.

    Article  Google Scholar 

  60. Sobue T, Yeh WC, Chhibber A, Utreja A, Diaz-Doran V, Adams D, et al. Murine TMJ loading causes increased proliferation and chondrocyte maturation. J Dent Res. 2011;90(4):512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Utreja A, Dyment NA, Yadav S, Villa MM, Li Y, Jiang X, et al. Cell and matrix response of temporomandibular cartilage to mechanical loading. Osteoarthr Cartil. 2016;24(2):335–44.

    Article  CAS  Google Scholar 

  62. Izawa T, Mori H, Shinohara T, Mino-Oka A, Hutami IR, Iwasa A, et al. Rebamipide attenuates mandibular condylar degeneration in a murine model of TMJ-OA by mediating a chondroprotective effect and by downregulating RANKL-mediated osteoclastogenesis. PLoS One. 2016;11(4):e0154107.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res. 2008;87(4):296–307.

    Article  CAS  PubMed  Google Scholar 

  64. Tung JT, Arnold CE, Alexander LH, Yuzbasiyan-Gurkan V, Venta PJ, Richardson DW, et al. Evaluation of the influence of prostaglandin E2 on recombinant equine interleukin-1beta-stimulated matrix metalloproteinases 1, 3, and 13 and tissue inhibitor of matrix metalloproteinase 1 expression in equine chondrocyte cultures. Am J Vet Res. 2002;63(7):987–93.

    Article  CAS  PubMed  Google Scholar 

  65. Gynther GW, Tronje G, Holmlund AB. Radiographic changes in the temporomandibular joint in patients with generalized osteoarthritis and rheumatoid arthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81(5):613–8.

    Article  CAS  PubMed  Google Scholar 

  66. Solberg WK, Woo MW, Houston JB. Prevalence of mandibular dysfunction in young adults. J Am Dent Assoc. 1979;98(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  67. Katzberg RW. Temporomandibular joint imaging. Radiology. 1989;170(2):297–307.

    Article  CAS  PubMed  Google Scholar 

  68. Tvrdy P. Methods of imaging in the diagnosis of temporomandibular joint disorders. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151(1):133–6.

    Article  PubMed  Google Scholar 

  69. Westesson PL, Bronstein SL. Temporomandibular joint: comparison of single- and double-contrast arthrography. Radiology. 1987;164(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  70. Vilanova JC, Barceló J, Puig J, Remollo S, Nicolau C, Bru C. Diagnostic imaging: magnetic resonance imaging, computed tomography, and ultrasound. Semin Ultrasound CT MR. 2007;28(3):184–91.

    Article  PubMed  Google Scholar 

  71. Jung YW, Park SH, On SW, Song SI. Correlation between clinical symptoms and magnetic resonance imaging findings in patients with temporomandibular joint internal derangement. J Korean Assoc Oral Maxillofac Surg. 2015;41(3):125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Koos B, Twilt M, Kyank U, Fischer-Brandies H, Gassling V, Tzaribachev N. Reliability of clinical symptoms in diagnosing temporomandibular joint arthritis in juvenile idiopathic arthritis. J Rheumatol. 2014;41(9):1871–7.

    Article  PubMed  Google Scholar 

  73. Lamot U, Strojan P, Surlan Popovic K. Magnetic resonance imaging of temporomandibular joint dysfunction-correlation with clinical symptoms, age, and gender. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(2):258–63.

    Article  PubMed  Google Scholar 

  74. Cho H, Bhatti FUR, Lee S, Brand DD, Yi AK, Hasty KA. In vivo dual fluorescence imaging to detect joint destruction. Artif Organs. 2016;40(10):1009–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lim NH, Vincent TL, Nissim A. In vivo optical imaging of early osteoarthritis using an antibody specific to damaged arthritic cartilage. Arthritis Res Ther. 2015;17:376.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cho H, Kim BJ, Park SH, Hasty KA, Min BH. Noninvasive visualization of early osteoarthritic cartilage using targeted nanosomes in a destabilization of the medial meniscus mouse model. Int J Nanomedicine. 2018;13:1215–24.

  77. Cho H, Bhatti FUR, Yoon TW, Hasty KA, Stuart JM, Yi AK. Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints. Biomed Opt Express. 2016;7(5):1842–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. •• Cho H, et al. Detection of early cartilage damage using targeted nanosomes in a post-traumatic osteoarthritis mouse model. Nanomedicine. 2015;11(4):939–46 This study describes that use of fluorescent labeled anti type II collagen antibody can detect early cartilage damage in a mouse model of osteoarthritis. This detection method may also prove to be useful for targeted delivery of drugs in the future.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

H.C. was supported by grants from Arthritis Foundation (Discovery Award), and Oxnard Foundation (Medical Research Award).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Do-Gyoon Kim or Hongsik Cho.

Ethics declarations

Conflict of Interest

FB, AK, BSL, TD, DK, HC declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any original studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Craniofacial Skeleton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, FUR., Karydis, A., Lee, B.S. et al. Understanding Early-Stage Posttraumatic Osteoarthritis for Future Prospects of Diagnosis: from Knee to Temporomandibular Joint. Curr Osteoporos Rep 19, 166–174 (2021). https://doi.org/10.1007/s11914-021-00661-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00661-3

Keywords

Navigation