Skip to main content

Advertisement

Log in

Advances in Therapy for Pediatric Sarcomas

  • Sarcomas (SR Patel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Pediatric sarcomas are relatively rare malignancies individually. As a group they are typically approached with combination chemotherapies in addition to local control. Fortunately, these malignancies have been approached through careful clinical trial collaboration to define risk groups and appropriately deliver local control measures and systemic therapies. Although local disease is typically approached with curative intent, therapy typically lasts over 6 months and has significant associated morbidities. It is more difficult to cure metastatic disease or induce sustained remissions. In this article, we discuss recent advances in the understanding of the disease process and highlight recent and future cooperative group trials in osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, nonrhabdomyosarcoma soft tissue sarcomas, and desmoid tumor as well as discuss promising therapeutic approaches such as epigenetics and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ries LAG et al., editors. Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. NIH publication no. 99-4649. Bethesda: National Cancer Institute; 1999.

    Google Scholar 

  2. Bleyer A et al., editors. Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival: 1975-2000. NIH publication no. 06-5767. Bethesda: National Cancer Institute; 2006.

    Google Scholar 

  3. Bielack SS et al. Bone tumors in adolescents and young adults. Curr Treat Options in Oncol. 2008;9(1):67–80.

    Google Scholar 

  4. Federman N et al. The multidisciplinary management of osteosarcoma. Curr Treat Options in Oncol. 2009;10(1–2):82–93.

    Google Scholar 

  5. Kempf-Bielack B et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559–68.

    PubMed  Google Scholar 

  6. Kager L et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21(10):2011–8.

    PubMed  Google Scholar 

  7. Bielack SS et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20(3):776–90.

    PubMed  Google Scholar 

  8. Ferrari S et al. Neoadjuvant chemotherapy with high-dose ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian sarcoma groups. J Clin Oncol. 2005;23(34):8845–52.

    PubMed  Google Scholar 

  9. Meyers PA et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005;23(9):2004–11.

    CAS  PubMed  Google Scholar 

  10. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115(7):1531–43.

    PubMed Central  PubMed  Google Scholar 

  11. Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther. 2006;6(7):1075–85.

    CAS  PubMed  Google Scholar 

  12. Chen X et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Clark JC, Dass CR, Choong PF. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 2008;134(3):281–97.

    CAS  PubMed  Google Scholar 

  14. Savage SA, Mirabello L. Using epidemiology and genomics to understand osteosarcoma etiology. Sarcoma. 2011;2011:548151.

    PubMed Central  PubMed  Google Scholar 

  15. Sampson VB et al. A review of targeted therapies evaluated by the pediatric preclinical testing program for osteosarcoma. Front Oncol. 2013;3:132.

    PubMed Central  PubMed  Google Scholar 

  16. Marina N et al. International collaboration is feasible in trials for rare conditions: the EURAMOS experience. Cancer Treat Res. 2009;152:339–53.

    CAS  PubMed  Google Scholar 

  17. Bielack S et al. MAP plus maintenance pegylated interferon α-2b (MAPIfn) versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 "good response" randomization. J Clin Oncol. 2013;31(18 Suppl), LBA10504.

    Google Scholar 

  18. Ebb D et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children's oncology group. J Clin Oncol. 2012;30(20):2545–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Chou AJ et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children's Oncology Group. Cancer. 2009;115(22):5339–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Meyers PA et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children's Oncology Group. J Clin Oncol. 2008;26(4):633–8.

    CAS  PubMed  Google Scholar 

  21. Goldsby RE et al. Feasibility and dose discovery analysis of zoledronic acid with concurrent chemotherapy in the treatment of newly diagnosed metastatic osteosarcoma: a report from the Children's Oncology Group. Eur J Cancer. 2013;49(10):2384–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Arndt CA et al. Inhaled granulocyte-macrophage colony stimulating factor for first pulmonary recurrence of osteosarcoma: effects on disease-free survival and immunomodulation. a report from the Children's Oncology Group. Clin Cancer Res. 2010;16(15):4024–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Beaty 3rd O et al. A phase II trial and pharmacokinetic study of oxaliplatin in children with refractory solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer. 2010;55(3):440–5.

    PubMed  Google Scholar 

  24. Bond M et al. A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer. 2008;50(2):254–8.

    PubMed  Google Scholar 

  25. Langevin AM et al. A phase II trial of rebeccamycin analogue (NSC #655649) in children with solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer. 2008;50(3):577–80.

    PubMed  Google Scholar 

  26. Saylors 3rd RL et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol. 2001;19(15):3463–9.

    CAS  PubMed  Google Scholar 

  27. Zwerdling T et al. Phase II investigation of docetaxel in pediatric patients with recurrent solid tumors: a report from the Children's Oncology Group. Cancer. 2006;106(8):1821–8.

    CAS  PubMed  Google Scholar 

  28. Jacobs S et al. Phase II trial of ixabepilone administered daily for five days in children and young adults with refractory solid tumors: a report from the children's oncology group. Clin Cancer Res. 2010;16(2):750–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Gorlick R et al. Children's Oncology Group's 2013 blueprint for research: bone tumors. Pediatr Blood Cancer. 2013;60(6):1009–15.

    PubMed  Google Scholar 

  30. Chou AJ et al. Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatr Blood Cancer. 2012;60(4):580–6.

    PubMed  Google Scholar 

  31. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253–65.

    CAS  PubMed  Google Scholar 

  32. Kolb EA et al. Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatr Blood Cancer. 2013;60(8):1325–32.

    CAS  PubMed  Google Scholar 

  33. Lamoureux F et al. Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Res. 2007;67(15):7308–18.

    CAS  PubMed  Google Scholar 

  34. Mori K et al. Receptor activator of nuclear factor-κB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol Rep. 2007;18(6):1365–71.

    CAS  PubMed  Google Scholar 

  35. Heiner JP et al. Localization of GD2-specific monoclonal antibody 3F8 in human osteosarcoma. Cancer Res. 1987;47(20):5377–81.

    CAS  PubMed  Google Scholar 

  36. Roth M et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 2014;120(4):548–54.

    CAS  PubMed  Google Scholar 

  37. Maric G et al. Glycoprotein non-metastatic b (GPNMB): a metastatic mediator and emerging therapeutic target in cancer. Oncotargets Ther. 2013;6:839–52.

    CAS  Google Scholar 

  38. Esiashvili N, Goodman M, Marcus Jr RB. Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: surveillance epidemiology and end results data. J Pediatr Hematol Oncol. 2008;30(6):425–30.

    PubMed  Google Scholar 

  39. Grier HE et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348(8):694–701.

    CAS  PubMed  Google Scholar 

  40. Womer RB et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol. 2012;30(33):4148–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cotterill SJ et al. Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group. J Clin Oncol. 2000;18(17):3108–14.

    CAS  PubMed  Google Scholar 

  42. Navid F et al. Second cancers in patients with the Ewing sarcoma family of tumours. Eur J Cancer. 2008;44(7):983–91.

    PubMed Central  PubMed  Google Scholar 

  43. Erkizan HV et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med. 2009;15(7):750–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Sankar S et al. Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene. 2013;32(42):5089–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bennani-Baiti IM et al. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum Pathol. 2012;43(8):1300–7.

    CAS  PubMed  Google Scholar 

  46. Grohar PJ et al. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst. 2011;103(12):962–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Fong PC et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.

    CAS  PubMed  Google Scholar 

  48. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.

    CAS  PubMed  Google Scholar 

  49. Carrle D, Bielack S. Osteosarcoma lung metastases detection and principles of multimodal therapy. Cancer Treat Res. 2009;152:165–84.

    PubMed  Google Scholar 

  50. Garnett MJ et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Soldatenkov VA et al. Regulation of the human poly(ADP-ribose) polymerase promoter by the ETS transcription factor. Oncogene. 1999;18(27):3954–62.

    CAS  PubMed  Google Scholar 

  52. Olmos D et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 2010;11(2):129–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Malempati S, Hawkins DS. Rhabdomyosarcoma: review of the Children's Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr Blood Cancer. 2012;59(1):5–10.

    PubMed Central  PubMed  Google Scholar 

  54. Juergens H et al. Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol. 2011;29(34):4534–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Pappo AS et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research Through Collaboration study. J Clin Oncol. 2011;29(34):4541–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Anderson JL et al. Pediatric sarcomas: translating molecular pathogenesis of disease to novel therapeutic possibilities. Pediatr Res. 2012;72(2):112–21.

    CAS  PubMed  Google Scholar 

  57. O'Reilly KE et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–8.

    PubMed Central  PubMed  Google Scholar 

  58. Schwartz GK et al. Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial. Lancet Oncol. 2013;14(4):371–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Naing A et al. Insulin growth factor-receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with refractory Ewing's sarcoma family tumors. Clin Cancer Res. 2012;18(9):2625–31.

    CAS  PubMed  Google Scholar 

  60. Ferrari A et al. Soft tissue sarcoma across the age spectrum: a population-based study from the surveillance epidemiology and end results database. Pediatr Blood Cancer. 2011;57(6):943–9.

    PubMed  Google Scholar 

  61. Perez EA et al. Rhabdomyosarcoma in children: a SEER population based study. J Surg Res. 2011;170(2):e243–51.

    PubMed  Google Scholar 

  62. Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001;20(40):5736–46.

    CAS  PubMed  Google Scholar 

  63. Williamson D et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010;28(13):2151–8.

    PubMed  Google Scholar 

  64. Skapek SX et al. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a Children's Oncology Group report. Pediatr Blood Cancer. 2013;60(9):1411–7.

    PubMed  Google Scholar 

  65. Pappo AS et al. Two consecutive phase II window trials of irinotecan alone or in combination with vincristine for the treatment of metastatic rhabdomyosarcoma: the Children's Oncology Group. J Clin Oncol. 2007;25(4):362–9.

    CAS  PubMed  Google Scholar 

  66. Children's Oncology Group Fall Meeting. 2013. Dallas.

  67. Weigel B et al. Early results from Children's Oncology Group (COG) ARST0431: intensive multidrug therapy for patients with metastatic rhabdomyosarcoma (RMS). J Clin Oncol. 2010;28(15 Suppl):9503.

    Google Scholar 

  68. Shern JF et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4(2):216–31.

    CAS  PubMed  Google Scholar 

  69. Shukla N et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res. 2012;18(3):748–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Li SQ et al. Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib (AP24534). PLoS One. 2013;8(10):e76551.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Gerber HP et al. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 2000;60(22):6253–8.

    CAS  PubMed  Google Scholar 

  72. Dilling MB et al. Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res. 1994;54(4):903–7.

    CAS  PubMed  Google Scholar 

  73. Houghton PJ et al. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2008;50(4):799–805.

    PubMed  Google Scholar 

  74. Kolb EA et al. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2008;50(6):1190–7.

    PubMed  Google Scholar 

  75. Ferrari A et al. Adult-type soft tissue sarcomas in pediatric-age patients: experience at the Istituto Nazionale Tumori in Milan. J Clin Oncol. 2005;23(18):4021–30.

    PubMed  Google Scholar 

  76. Spunt SL et al. Prognostic factors for children and adolescents with surgically resected nonrhabdomyosarcoma soft tissue sarcoma: an analysis of 121 patients treated at St Jude Children's Research Hospital. J Clin Oncol. 1999;17(12):3697–705.

    CAS  PubMed  Google Scholar 

  77. Blaes AH et al. Pathologic femur fractures after limb-sparing treatment of soft-tissue sarcomas. J Cancer Surviv. 2010;4(4):399–404.

    PubMed  Google Scholar 

  78. Tukenova M et al. Radiation therapy and late mortality from second sarcoma, carcinoma, and hematological malignancies after a solid cancer in childhood. Int J Radiat Oncol Biol Phys. 2011;80(2):339–46.

    PubMed  Google Scholar 

  79. Pervaiz N et al. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer. 2008;113(3):573–81.

    PubMed  Google Scholar 

  80. Pappo AS et al. Phase II trial of neoadjuvant vincristine, ifosfamide, and doxorubicin with granulocyte colony-stimulating factor support in children and adolescents with advanced-stage nonrhabdomyosarcomatous soft tissue sarcomas: a Pediatric Oncology Group study. J Clin Oncol. 2005;23(18):4031–8.

    CAS  PubMed  Google Scholar 

  81. Pratt CB et al. Treatment of unresectable or metastatic pediatric soft tissue sarcomas with surgery, irradiation, and chemotherapy: a Pediatric Oncology Group study. Med Pediatr Oncol. 1998;30(4):201–9.

    CAS  PubMed  Google Scholar 

  82. Demetri GD et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–38.

    CAS  PubMed  Google Scholar 

  83. Gooskens SL et al. Imatinib mesylate for children with dermatofibrosarcoma protuberans (DFSP). Pediatr Blood Cancer. 2010;55(2):369–73.

    PubMed  Google Scholar 

  84. Heinrich MC et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21(23):4342–9.

    CAS  PubMed  Google Scholar 

  85. McArthur GA et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium study B2225. J Clin Oncol. 2005;23(4):866–73.

    CAS  PubMed  Google Scholar 

  86. Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 2013;153(1):71–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Barretina J et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42(8):715–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Thomas RK et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39(3):347–51.

    CAS  PubMed  Google Scholar 

  89. Wardelmann E et al. Soft tissue sarcoma: from molecular diagnosis to selection of treatment. Pathological diagnosis of soft tissue sarcoma amid molecular biology and targeted therapies. Ann Oncol. 2010;21 Suppl 7:265–9.

    Google Scholar 

  90. Holtkamp N et al. Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis. 2006;27(3):664–71.

    CAS  PubMed  Google Scholar 

  91. Park MS, Ravi V, Araujo DM. Inhibiting the VEGF-VEGFR pathway in angiosarcoma, epithelioid hemangioendothelioma, and hemangiopericytoma/solitary fibrous tumor. Curr Opin Oncol. 2010;22(4):351–5.

    CAS  PubMed  Google Scholar 

  92. Potti A et al. Determination of vascular endothelial growth factor (VEGF) overexpression in soft tissue sarcomas and the role of overexpression in leiomyosarcoma. J Cancer Res Clin Oncol. 2004;130(1):52–6.

    CAS  PubMed  Google Scholar 

  93. Tamborini E et al. Expression of ligand-activated KIT and platelet-derived growth factor receptor beta tyrosine kinase receptors in synovial sarcoma. Clin Cancer Res. 2004;10(3):938–43.

    CAS  PubMed  Google Scholar 

  94. Hurwitz HI et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15(12):4220–7.

    CAS  PubMed  Google Scholar 

  95. Sleijfer S et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European Organisation for Research and Treatment of Cancer–Soft Tissue and Bone Sarcoma Group (EORTC study 62043). J Clin Oncol. 2009;27(19):3126–32.

    CAS  PubMed  Google Scholar 

  96. van der Graaf WT et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379(9829):1879–86.

    PubMed  Google Scholar 

  97. Glade Bender JL et al. Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a Children’s Oncology Group Phase I Consortium report. J Clin Oncol. 2013;31(24):3034–43.

    PubMed Central  PubMed  Google Scholar 

  98. Abou-Alfa GK, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. JAMA. 304(19):2154-60.

  99. Wu YL et al. Intercalated combination of chemotherapy and erlotinib for patients with advanced stage non-small-cell lung cancer (FASTACT-2): a randomised, double-blind trial. Lancet Oncol. 2013;14(8):777–86.

    CAS  PubMed  Google Scholar 

  100. Eilber FC et al. Treatment-induced pathologic necrosis: a predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. J Clin Oncol. 2001;19(13):3203–9.

    CAS  PubMed  Google Scholar 

  101. Alebouyeh M et al. Aggressive intra-abdominal fibromatosis in children and response to chemotherapy. Pediatr Hematol Oncol. 2005;22(6):447–51.

    CAS  PubMed  Google Scholar 

  102. Reitamo JJ, Scheinin TM, Hayry P. The desmoid syndrome. New aspects in the cause, pathogenesis and treatment of the desmoid tumor. Am J Surg. 1986;151(2):230–7.

    CAS  PubMed  Google Scholar 

  103. Bertario L et al. Genotype and phenotype factors as determinants of desmoid tumors in patients with familial adenomatous polyposis. Int J Cancer. 2001;95(2):102–7.

    CAS  PubMed  Google Scholar 

  104. Gomez Garcia EB, Knoers NV. Gardner's syndrome (familial adenomatous polyposis): a cilia-related disorder. Lancet Oncol. 2009;10(7):727–35.

    PubMed  Google Scholar 

  105. Pressey JG et al. Sirolimus therapy for fibromatosis and multifocal renal cell carcinoma in a child with tuberous sclerosis complex. Pediatr Blood Cancer. 2010;54(7):1035–7.

    PubMed  Google Scholar 

  106. Buitendijk S et al. Pediatric aggressive fibromatosis: a retrospective analysis of 13 patients and review of literature. Cancer. 2005;104(5):1090–9.

    PubMed  Google Scholar 

  107. Faulkner LB et al. Pediatric desmoid tumor: retrospective analysis of 63 cases. J Clin Oncol. 1995;13(11):2813–8.

    CAS  PubMed  Google Scholar 

  108. Melis M, Zager JS, Sondak VK. Multimodality management of desmoid tumors: how important is a negative surgical margin? J Surg Oncol. 2008;98(8):594–602.

    PubMed  Google Scholar 

  109. Jabbari S et al. Successful treatment of high risk and recurrent pediatric desmoids using radiation as a component of multimodality therapy. Int J Radiat Oncol Biol Phys. 2009;75(1):177–82.

    PubMed  Google Scholar 

  110. Merchant TE et al. Long-term results with radiation therapy for pediatric desmoid tumors. Int J Radiat Oncol Biol Phys. 2000;47(5):1267–71.

    CAS  PubMed  Google Scholar 

  111. Ayala AG et al. Desmoid fibromatosis: a clinicopathologic study of 25 children. Semin Diagn Pathol. 1986;3(2):138–50.

    CAS  PubMed  Google Scholar 

  112. Constantinidou A et al. Pegylated liposomal doxorubicin, an effective, well-tolerated treatment for refractory aggressive fibromatosis. Eur J Cancer. 2009;45(17):2930–4.

    CAS  PubMed  Google Scholar 

  113. Heinrich MC et al. Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J Clin Oncol. 2006;24(7):1195–203.

    CAS  PubMed  Google Scholar 

  114. Meazza C et al. Aggressive fibromatosis in children and adolescents: the Italian experience. Cancer. 2010;116(1):233–40.

    CAS  PubMed  Google Scholar 

  115. Raney B et al. Nonsurgical management of children with recurrent or unresectable fibromatosis. Pediatrics. 1987;79(3):394–8.

    CAS  PubMed  Google Scholar 

  116. Skapek SX et al. Vinblastine and methotrexate for desmoid fibromatosis in children: results of a Pediatric Oncology Group phase II trial. J Clin Oncol. 2007;25(5):501–6.

    CAS  PubMed  Google Scholar 

  117. Skapek SX et al. Safety and efficacy of high-dose tamoxifen and sulindac for desmoid tumor in children: results of a Children's Oncology Group (COG) phase II study. Pediatr Blood Cancer. 2013;60(7):1108–12.

    CAS  PubMed  Google Scholar 

  118. Fiore M et al. Desmoid-type fibromatosis: a front-line conservative approach to select patients for surgical treatment. Ann Surg Oncol. 2009;16(9):2587–93.

    PubMed  Google Scholar 

  119. Gronchi A et al. Sporadic desmoid-type fibromatosis: a stepwise approach to a non-metastasising neoplasm—a position paper from the Italian and the French sarcoma group. Ann Oncol. 2014;25(3):578–83.

    CAS  PubMed  Google Scholar 

  120. Lazar AJ et al. Specific mutations in the β-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173(5):1518–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Tejpar S et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene. 1999;18(47):6615–20.

    CAS  PubMed  Google Scholar 

  122. Goldberg JM. Immunotherapy of sarcomas. Curr Opin Oncol. 2013;25(4):390–7.

    CAS  PubMed  Google Scholar 

  123. Strbo N, Podack ER. Secreted heat shock protein gp96-Ig: an innovative vaccine approach. Am J Reprod Immunol. 2008;59(5):407–16.

    CAS  PubMed  Google Scholar 

  124. Hodi FS et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Brinkrolf P et al. A high proportion of bone marrow T cells with regulatory phenotype (CD4+CD25hiFoxP3+) in Ewing sarcoma patients is associated with metastatic disease. Int J Cancer. 2009;125(4):879–86.

    CAS  PubMed  Google Scholar 

  126. Salama AK, Hodi FS. Cytotoxic T-lymphocyte-associated antigen-4. Clin Cancer Res. 2011;17(14):4622–8.

    CAS  PubMed  Google Scholar 

  127. Topalian SL et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Maki RG et al. A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma. 2013;2013:168145.

    PubMed Central  PubMed  Google Scholar 

  129. Robbins PF et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.

    PubMed Central  PubMed  Google Scholar 

  130. Mackall CL et al. A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin Cancer Res. 2008;14(15):4850–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Burdach S et al. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-cell transplant programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann Oncol. 2000;11(11):1451–62.

    CAS  PubMed  Google Scholar 

  132. Gore L et al. A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas. Clin Cancer Res. 2008;14(14):4517–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Berghuis D et al. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin Sarcoma Res. 2012;2(1):8.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Rao-Bindal K et al. The histone deacetylase inhibitor, MS-275 (entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and induces the regression of osteosarcoma lung metastases. Curr Cancer Drug Targets. 2013;13(4):411–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Keshelava N et al. Initial testing (stage 1) of vorinostat (SAHA) by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2009;53(3):505–8.

    PubMed Central  PubMed  Google Scholar 

  136. Krishnadas DK et al. Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1. Tumor Biol. 2014. doi:10.1007/s13277-014-1764-9.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Aaron Weiss, Jonathan Gill, John Goldberg, Joanne Lagmay, Holly Spraker-Perlman, Rajkumar Venkatramani, and Damon Reed declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damon Reed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, A., Gill, J., Goldberg, J. et al. Advances in Therapy for Pediatric Sarcomas. Curr Oncol Rep 16, 395 (2014). https://doi.org/10.1007/s11912-014-0395-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-014-0395-z

Keywords

Navigation