Skip to main content

Advertisement

Log in

Targeted therapy for lung cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Lung cancer remains the leading cause of death in men and women in the United States. This status is attributed to late diagnosis and lack of effective chemotherapy for metastatic lung cancer. Understanding of the mechanism by which mutated genes confer a neoplastic phenotype on cells has resulted in the development of many potential targeted cancer therapies. This article briefly discusses the work being done with some of these targeted agents in the treatment of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jemal A, Thomas A, Murray T, et al.: Cancer statistics, 2002. CA Cancer J Clin 2002, 52:23–47.

    Article  PubMed  Google Scholar 

  2. Bunn PA Jr, Kelly K: New chemotherapeutic agents prolong survival and improve quality of life in non-small cell lung cancer: a review of the literature and future directions. Clin Cancer Res 1998, 4:1087–1100.

    PubMed  CAS  Google Scholar 

  3. Dy GK, Adjei AA: Novel targets for lung cancer therapy: part I. J Clin Oncol 2002, 20:2881–2894. Comprehensive review of moecular pathways and targets for therapy with novel agents. Describes current status of most targeted agents in clinical trials.

    Article  PubMed  CAS  Google Scholar 

  4. Salomon DS, Brandt R, Ciardiello F, et al.: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995, 19:183–232.

    PubMed  CAS  Google Scholar 

  5. Franklin W, Veve R, Hirsch F: Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol 2002, 1:3–14.

    Article  Google Scholar 

  6. Bos M, Mendelsohn J, Bowden C: Phase I studies of anti-epidermal growth factor receptor (EGFR) chimeric monoclonal antibody C225 in patients with EGFR overexpressing tumors [abstract]. Proc ASCO 1996, 15:1381.

    Google Scholar 

  7. Yang X, Jia X, Corvalan J: Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody,for cancer therapy. Crit Rev Oncol Hematol 2001, 38:17–23.

    PubMed  CAS  Google Scholar 

  8. Figlin R, Belldegrun A, Lohner M: ABX-EGF: A fully human anti-EGF receptor antibody in patients with advanced cancer [abstract]. Proc ASCO 2001, 20:1102.

    Google Scholar 

  9. Ferry D, Hammond L, Ranson M: Intermittent oral ZD1839 (Iressa), a novel epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), shows evidence of good tolerability and activity: final results from a phase I study [abstract]. Proc ASCO, 2000, 19:5E.

    Google Scholar 

  10. Baselga J, Herbst R, LoRusso P, et al.: Continuous administration of ZD1839 (Iressa), a novel oral epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), in patients with five selected tumor types: evidence of activity and good tolerability [abstract]. Proc ASCO, 2000 19:686.

    Google Scholar 

  11. Negoro S, Nakagawa K, Fukuoka M: Final results of a phase I intermittent dose-escalation trial of ZD1839 (‘Iressa’) in Japanese patients with various solid tumours [abstract]. Proc ASCO 2001, 20:1292.

    Google Scholar 

  12. Fukuoka M, Yano S, Giaccone G, et al.: Final results from a phase II trial of ZD1839 (‘Iressa’) for patients with advanced non-small-cell lung cancer (IDEAL 1) [abstract]. Proc ASCO 2002, 21:1188. One of the first US trials to document the efficacy and safety of ZD1839 in advanced refractory NSCLC.

    Google Scholar 

  13. Kris MG, Natale RB, Herbst RS, et al.: A phase II trial of ZD1839 (‘Iressa’) in advanced non-small cell lung cancer (NSCLC) patients who had failed platinum- and docetaxelbased regimens (IDEAL 2) [abstract]. Proc ASCO 2002, 21:1166. Another early US trial of ZD1839.

    Google Scholar 

  14. Perez-Soler R, Chachoua A, Huberman M: A phase II trial of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor OSI-774, following platinum-based chemotherapy, in patients (pts) with advanced, EGFR-expressing, non-small cell lung cancer (NSCLC) [abstract]. Proc ASCO 2001, 20:1235.

    Google Scholar 

  15. Tsai CM, Chang KT, Wu LH, et al.: Correlations between intrinsic chemoresistance and HER-2/neu gene expression, p53 gene mutations, and cell proliferation characteristics in nonsmall cell lung cancer cell lines. Cancer Res 1996, 56:206–209.

    PubMed  CAS  Google Scholar 

  16. Ben-Levy R, Paterson HF, Marshall CJ, et al.: A single autophosphorylation site confers oncogenicity to the Neu/ErbB-2 receptor and enables coupling to the MAP kinase pathway. EMBO J 1994, 13:3302–3311.

    PubMed  CAS  Google Scholar 

  17. Pegram M, Hsu S, Lewis G, et al.: Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 1999, 18:2241–2251.

    Article  PubMed  CAS  Google Scholar 

  18. Slamon DJ, Clark GM, Wong SG, et al.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235:177–182.

    Article  PubMed  CAS  Google Scholar 

  19. Naveen K, Dakappagari D, Douglas P: Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Res 2000, 60:3782–3789.

    Google Scholar 

  20. Haluska P, Adjei AA: Receptor tyrosine kinase inhibitors. Curr Opin Invest Drugs 2001, 2:280–286.

    CAS  Google Scholar 

  21. Heinrich MC, Griffith DJ, Druker BJ, et al.: Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000, 96:925–932.

    PubMed  CAS  Google Scholar 

  22. Krystal GW, Honsawek S, Litz J, et al.: The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth[comment]. Clin Cancer Res 2000, 6:3319–3326.

    PubMed  CAS  Google Scholar 

  23. Johnson B, Fisher B, Fisher T: Phase II study of STI571 (Gleevec TM) for patients with small cell lung cancer [abstract] Proc ASCO 2002, 21:1171.

    Google Scholar 

  24. Nishizuka Y: The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988, 334:661–665.

    Article  PubMed  CAS  Google Scholar 

  25. Tamaoki T, Nakano H: Potent and specific inhibitors of protein kinase C of microbial origin. Biotechnology (N Y) 1990, 8:732–735.

    Article  CAS  Google Scholar 

  26. Sausville EA, Arbuck SG, Messmann R, et al.: Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001, 19:2319–2333.

    PubMed  CAS  Google Scholar 

  27. Propper DJ, McDonald AC, Man A, et al.: Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol 2001, 19:1485–1492.

    PubMed  CAS  Google Scholar 

  28. Prendeville J, Crowther D, Thatcher N: A phase I study of intravenous bryostatin-1 in patients with advanced cancer. Br J Cancer 1993, 68:418–424.

    Google Scholar 

  29. Jayson GC, Crowther D, Prendiville J, et al.: A phase I trial of bryostatin 1 in patients with advanced malignancy using a 24 hour intravenous infusion. Br J Cancer 1995, 72:461–468.

    PubMed  CAS  Google Scholar 

  30. Yuen A, Halsey J, Fisher G: Phase I/II trial of ISIS 3521, an antisense inhibitor of PKC-alpha, with carboplatin and paclitaxel in non-small cell lung cancer [abstract]. Proc ASCO 2001, 20:1234.

    Google Scholar 

  31. Ritch P, Belt R, George S: Phase I/II trial of ISIS 3521/ LY900003, an antinsense inhibitor of PKC-alpha with cisplatin and gemcitabine in advanced non-small cell lung cancer (NSCLC) [abstract]. Proc ASCO, 2002, 21:1233.

    Google Scholar 

  32. Haluska P, Dy GK, Adjei AA: Farnesyl transferase inhibitors as anticancer agents. Eur J Cancer 2002, 38:1685–1700.

    Article  PubMed  CAS  Google Scholar 

  33. Adjei A, Mauer A, Marks R: A phase II study of the farnesyltransferase inhibitor R115777 in patients with advanced nonsmall cell lung cancer [abstract]. Proc ASCO 2002, 21:1156.

    Google Scholar 

  34. Chambon P: The retinoid signaling pathway: molecular and genetic analyses. Semin Cell Biol 1994, 5:115–125.

    Article  PubMed  CAS  Google Scholar 

  35. Nagy L, Thomazy VA, Shipley GL, et al.: Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol Cell Biol 1995, 15:3540–3551.

    PubMed  CAS  Google Scholar 

  36. Lippman SM, Lee JJ, Karp DD, et al.: Randomized phase III intergroup trial of isotretinoin to prevent second primary tumors in stage I non-small-cell lung cancer. J Natl Cancer Inst 2001, 93:605–618.

    Article  PubMed  CAS  Google Scholar 

  37. Kalemkerian GP, Ou X: Activity of fenretinide plus chemotherapeutic agents in small-cell lung cancer cell lines. Cancer Chemother Pharmacol 1999, 43:145–150.

    Article  PubMed  CAS  Google Scholar 

  38. Khuri FR, Rigas JR, Figlin RA, et al.: Multi-institutional phase I/ II trial of oral bexarotene in combination with cisplatin and vinorelbine in previously untreated patients with advanced non-small-cell lung cancer. J Clin Oncol 2001, 19:2626–37.

    PubMed  CAS  Google Scholar 

  39. Sherr CJ: G1 phase progression: cycling on cue [comment]. Cell 1994, 79:551–555.

    Article  PubMed  CAS  Google Scholar 

  40. Carlson BA, Dubay MM, Sausville EA, et al.: Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 1996, 56:2973–2978.

    PubMed  CAS  Google Scholar 

  41. Konig A, Schwartz GK, Mohammad RM, et al.: The novel cyclin-dependent kinase inhibitor flavopiridol downregulates Bcl-2 and induces growth arrest and apoptosis in chronic B-cell leukemia lines. Blood 1997, 90:4307–4312.

    PubMed  CAS  Google Scholar 

  42. Bissery M, Lejeune P, Vrignaud P: The combination of flavopiridol with docetaxel (Taxotere) is synergistic in a murine adenocarcinoma model MA13/C [abstract]. Proc ASCO 2002, 21:464.

    Google Scholar 

  43. Gries J, Kasimis B, Schwarzenberger P: Phase I study of HMR1275 (flavopiridol) in non-small cell lung cancer (NCSLC) patients after 24hr IV administration in combination with paclitaxel and carboplatin [abstract]. Proc ASCO 2002, 21:372.

    Google Scholar 

  44. Thompson WJ, Piazza GA, Li H, et al.: Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin. Cancer Res 2000, 60:3338–3342.

    PubMed  CAS  Google Scholar 

  45. Soriano AF, Helfrich B, Chan DC, et al.: Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res 1999, 59:6178–6184.

    PubMed  CAS  Google Scholar 

  46. Jones S, Kuhn J, Raefsky E: A phase I study of exisulind in combination with docetaxel/carboplatin in patients with non-small cell lung cancer (NSCLC) [abstract]. Proc ASCO 2002, 21:1314.

    Google Scholar 

  47. Hida T, Kozaki K, Muramatsu H, et al.: Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 2000, 6:2006–2011.

    PubMed  CAS  Google Scholar 

  48. Altorki N, Keresztes R, Port J: Celecoxib (Celebrex), a selective COX-2 inhibitor, enhances the response to preoperative paclitaxel/carboplatin in early stage non-small cell lung cancer [abstract]. Proc ASCO 2002, 21:101.

    Google Scholar 

  49. Csiki I, Dang T, Gonzalez A, et al.: Cyclooxygenase-2 (COX-2) inhibition + docetaxel (Txt) in recurrent non-small cell lung cancer (NSCLC): preliminary results of a phase II trial (THO-0054) [abstract]. Proc ASCO 2002, 21:1187.

    Google Scholar 

  50. Quinlan DC, Davidson AG, Summers CL, et al.: Accumulation of p53 protein correlates with a poor prognosis in human lung cancer. Cancer Res 1992, 52:4828–4831.

    PubMed  CAS  Google Scholar 

  51. Sandig V, Brand K, Herwig S, et al.: Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med 1997, 3:313–319.

    Article  PubMed  CAS  Google Scholar 

  52. Spitz FR, Nguyen D, Skibber JM, et al.: Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 1996, 2:1665–1671.

    PubMed  CAS  Google Scholar 

  53. Roth JA, Nguyen D, Lawrence DD, et al.: Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer [comment]. Nat Med 1996, 2:985–991.

    Article  PubMed  CAS  Google Scholar 

  54. Swisher SG, Roth JA, Nemunaitis J, et al.: Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 1999, 91:763–771.

    Article  PubMed  CAS  Google Scholar 

  55. Nemunaitis J, Swisher SG, Timmons T, et al.: Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 2000, 18:609–622.

    PubMed  CAS  Google Scholar 

  56. Swisher S, Roth J, Komaki R: A phase II trial of adenoviral mediated P53 gene transfer (RPR/INGN 201) in conjunction with radiation therapy in patients with localized non-small cell lung cancer (NSCLC) [abstract]. Proc ASCO 2000, 19:1807.

    Google Scholar 

  57. Schuler M, Hermann R, Greve JD: Adenovirus-mediated wildtype p53 gene transfer in patients receiving chemotherapy for advanced non-small cell lung cancer: results of a multicenter phase II study. J Clin Oncol 2001, 19:1750–1758.

    PubMed  CAS  Google Scholar 

  58. Rudin CM, Otterson GA, Mauer AM, et al.: A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer [comment]. Ann Oncol 2002, 13:539–545.

    Article  PubMed  CAS  Google Scholar 

  59. de Vries C, Escobedo JA, Ueno H, et al.: The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992, 255:989–991.

    Article  PubMed  Google Scholar 

  60. Terman BI, Dougher-Vermazen M, Carrion ME, et al.: Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992, 187:1579–1586.

    Article  PubMed  CAS  Google Scholar 

  61. Shweiki D, Itin A, Soffer D, et al.: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359:843–845. Discusses the relationship between VEGF and hypoxia.

    Article  PubMed  CAS  Google Scholar 

  62. Waltenberger J, Mayr U, Pentz S, et al.: Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia [comment]. Circulation 1996, 94:1647–1654.

    PubMed  CAS  Google Scholar 

  63. Kieser A, Weich HA, Brandner G, et al.: Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 1994, 9:963–969.

    PubMed  CAS  Google Scholar 

  64. Li J, Perella M, Tsai J-C: Induction of vascular endothelial growth factor gene expression by interleukin-1b in rat aortic smooth mucle cells. J Biol Chem 1995, 270:308–312.

    Article  PubMed  CAS  Google Scholar 

  65. Johnson D, De Vore R, Kabbinavar F: Carboplatin (C) + paclitaxel (T) + RhuMab-VEGF (AVF) may prolong survival in advanced non-squamous lung cancer [abstract]. Proc ASCO 2001, 20:1256. Report from phase II North American study documenting the efficacy of RhuMAB-VEGF in NSCLC (nonsquamous histology).

    Google Scholar 

  66. Akhter S, Nath SK, Tse CM, et al.: Squalamine, a novel cationic steroid, specifically inhibits the brush-border Na+/H+ exchanger isoform NHE3. Am J Physiol 1999, 276:C136-C144.

    PubMed  CAS  Google Scholar 

  67. Sills AK Jr, Williams JI, Tyler BM, et al.: Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res 1998, 58:2784–2792.

    PubMed  CAS  Google Scholar 

  68. Schiller JH, Bittner G: Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization. Clin Cancer Res 1999, 5:4287–4294.

    PubMed  CAS  Google Scholar 

  69. Schiller J, Hammond L, Carbone D: Phase 2A trial of squalamine for treatment of advanced non-small cell lung cancer [abstract] Proc ASCO 2001 20:1353.

    Google Scholar 

  70. Shepherd FA, Giaccone G, Seymour L, et al.: Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol 2002, 20:4434–4439.

    Article  PubMed  CAS  Google Scholar 

  71. Smylie M, Mercier R, Aboulafia D: Phase III study of the matrix metalloprotease (MMP) inhibitor prinomastat in patients having advanced non-small cell lung cancer (NSCLC) [abstract]. Proc ASCO 2001, 20:1226.

    Google Scholar 

  72. Riviere M, Alaoui-Jamali M, Falardeau P: Neovastat: An inhibitor of angiogenesis with anticancer activity [abstract]. Proc Am Assoc Cancer Res 1998; 317.

  73. Franqois B, Champagne P, Evans W: Phase I/II trials on the safety, tolerability and efficacy of Æ-941 (Neovastat) in patients with solid tumors. Proc ASCO 2001, 20:2861.

    Google Scholar 

  74. Grant SC, Kris MG, Houghton AN, et al.: Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus bacillus Calmette-Guerin. Clin Cancer Res 1999, 5:1319–1323.

    PubMed  CAS  Google Scholar 

  75. Dranoff G, Jaffee E, Lazenby A, et al.: Vaccination with irradiated tumor cells engineered to secrete murine granulocytemacrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993, 90:3539–3543.

    Article  PubMed  CAS  Google Scholar 

  76. Nemunaitis J, Sterman D, Jablons D: A phase I/II study of autologous GM-CSF gene-modified cancer vaccines in subjects with non-small cell lung cancer (NSCLC) [abstract]. Proc ASCO 2001, 20:1019.

    Google Scholar 

  77. Salgia R, Lynch T, Skarin A, et al.: Vaccination with irradiated autologous tumor cells engineered to secrete granulocytemacrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma [comment]. J Clin Oncol 2003, 21:624–630. A novel GM-CSF-secreting tumor vaccine study in NSCLC.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukunoor, R., Shah, J. & Mekhail, T. Targeted therapy for lung cancer. Curr Oncol Rep 5, 326–333 (2003). https://doi.org/10.1007/s11912-003-0075-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-003-0075-x

Keywords

Navigation