Skip to main content

Advertisement

Log in

Depression and Anxiety in the Epilepsies: from Bench to Bedside

  • Epilepsy (C.W. Bazil, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Depression and anxiety substantially contribute to interictal disability in patients with epilepsy (PWE). This review summarizes current studies that shed light on mechanisms of comorbidity.

Recent Findings

Mounting epidemiological data implicate shared risk factors for anxiety/depression and seizure propensity, but these remain largely elusive and probably vary by epilepsy type. Within PWE, these symptoms appear to be associated with unique genetic, neuropathological, and connectivity profiles. Temporal lobe epilepsy has received enormous emphasis particularly in preclinical studies of comorbidity, where candidate neurobiological mechanisms underlying bidirectionality have been tested without psychopharmacological confounds.

Summary

Depression and anxiety in epilepsy reflect dysfunction within broadly distributed limbic networks that may be the cause or consequence of epileptogenesis. In refractory epilepsy, seizures and/or certain anticonvulsants may distort central emotional homeostatic mechanisms that perpetually raise seizure risk. Developing future safe and effective combined anticonvulsant-antidepressant treatments will require a detailed understanding of anatomical and molecular nodes that pleiotropically enhance seizure risk and negatively alter emotionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hesdorffer DC, Logroscino G, Benn EK, Katri N, Cascino G, Hauser WA. Estimating risk for developing epilepsy: a population-based study in Rochester. Minnesota Neurology. 2011;76(1):23–7. https://doi.org/10.1212/WNL.0b013e318204a36a.

    Article  CAS  PubMed  Google Scholar 

  2. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology. 2017;88(3):296–303. https://doi.org/10.1212/WNL.0000000000003509.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Collaborators GBDN. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–80. https://doi.org/10.1016/S1474-4422(18)30499-X.

    Article  Google Scholar 

  4. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–82. https://doi.org/10.1111/epi.12550.

    Article  PubMed  Google Scholar 

  5. Devinsky O, Barr WB, Vickrey BG, Berg AT, Bazil CW, Pacia SV, et al. Changes in depression and anxiety after resective surgery for epilepsy. Neurology. 2005;65(11):1744–9. https://doi.org/10.1212/01.wnl.0000187114.71524.c3.

    Article  CAS  PubMed  Google Scholar 

  6. Tellez-Zenteno JF, Patten SB, Jette N, Williams J, Wiebe S. Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia. 2007;48(12):2336–44. https://doi.org/10.1111/j.1528-1167.2007.01222.x.

    Article  PubMed  Google Scholar 

  7. Helmstaedter C, Witt JA. Epilepsy and cognition - a bidirectional relationship? Seizure. 2017;49:83–9. https://doi.org/10.1016/j.seizure.2017.02.017.

    Article  PubMed  Google Scholar 

  8. Bell B, Lin JJ, Seidenberg M, Hermann B. The neurobiology of cognitive disorders in temporal lobe epilepsy. Nat Rev Neurol. 2011;7(3):154–64. https://doi.org/10.1038/nrneurol.2011.3.

    Article  PubMed  Google Scholar 

  9. Besag FM. Current controversies in the relationships between autism and epilepsy. Epilepsy Behav. 2015;47:143–6. https://doi.org/10.1016/j.yebeh.2015.05.032.

    Article  PubMed  Google Scholar 

  10. Tuchman R. What is the relationship between autism spectrum disorders and epilepsy? Semin Pediatr Neurol. 2017;24(4):292–300. https://doi.org/10.1016/j.spen.2017.10.004.

    Article  PubMed  Google Scholar 

  11. Kanner AM. Can neurobiological pathogenic mechanisms of depression facilitate the development of seizure disorders? Lancet Neurol. 2012;11(12):1093–102. https://doi.org/10.1016/S1474-4422(12)70201-6.

    Article  CAS  PubMed  Google Scholar 

  12. Mazarati A, Sankar R. Common mechanisms underlying epileptogenesis and the comorbidities of epilepsy. Cold Spring Harb Perspect Med. 2016;6(7). https://doi.org/10.1101/cshperspect.a022798.

  13. Epps SA, Weinshenker D. Rhythm and blues: animal models of epilepsy and depression comorbidity. Biochem Pharmacol. 2013;85(2):135–46. https://doi.org/10.1016/j.bcp.2012.08.016.

    Article  CAS  PubMed  Google Scholar 

  14. Beijers L, Wardenaar KJ, van Loo HM, Schoevers RA. Data-driven biological subtypes of depression: systematic review of biological approaches to depression subtyping. Mol Psychiatry. 2019;24(6):888–900. https://doi.org/10.1038/s41380-019-0385-5.

    Article  PubMed  Google Scholar 

  15. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23(1):28–38. https://doi.org/10.1038/nm.4246.

    Article  CAS  PubMed  Google Scholar 

  16. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902. https://doi.org/10.1038/nature07455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park C, Rosenblat JD, Brietzke E, Pan Z, Lee Y, Cao B, et al. Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev. 2019;102:139–52. https://doi.org/10.1016/j.neubiorev.2019.04.010.

    Article  CAS  PubMed  Google Scholar 

  18. Koo JW, Chaudhury D, Han MH, Nestler EJ. Role of mesolimbic brain-derived neurotrophic factor in depression. Biol Psychiatry. 2019;86(10):738–48. https://doi.org/10.1016/j.biopsych.2019.05.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019;20(1):49–65. https://doi.org/10.1038/s41583-018-0088-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pitsillou E, Bresnehan SM, Kagarakis EA, Wijoyo SJ, Liang J, Hung A, et al. The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol Biol Rep. 2020;47(1):753–70. https://doi.org/10.1007/s11033-019-05129-3.

    Article  CAS  PubMed  Google Scholar 

  21. Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microb Cell. 2019;6(10):454–81. https://doi.org/10.15698/mic2019.10.693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cathomas F, Murrough JW, Nestler EJ, Han MH, Russo SJ. Neurobiology of resilience: Interface between mind and body. Biol Psychiatry. 2019;86(6):410–20. https://doi.org/10.1016/j.biopsych.2019.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stein MB, Sareen J. CLINICAL PRACTICE. Generalized anxiety disorder. N Engl J Med. 2015;373(21):2059–68. https://doi.org/10.1056/NEJMcp1502514.

    Article  CAS  PubMed  Google Scholar 

  24. Krishnan V, Leung LY, Caplan LR. A neurologist’s approach to delirium: diagnosis and management of toxic metabolic encephalopathies. European Journal of Internal Medicine. 2013.

  25. Besteher B, Gaser C, Nenadic I. Brain structure and subclinical symptoms: a dimensional perspective of psychopathology in the depression and anxiety spectrum. Neuropsychobiology. 2019;79:1–14. https://doi.org/10.1159/000501024.

    Article  Google Scholar 

  26. Lilienfeld SO, Treadway MT. Clashing diagnostic approaches: DSM-ICD versus RDoC. Annu Rev Clin Psychol. 2016;12:435–63. https://doi.org/10.1146/annurev-clinpsy-021815-093122.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fiest KM, Dykeman J, Patten SB, Wiebe S, Kaplan GG, Maxwell CJ, et al. Depression in epilepsy: a systematic review and meta-analysis. Neurology. 2013;80(6):590–9. https://doi.org/10.1212/WNL.0b013e31827b1ae0.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Scott AJ, Sharpe L, Hunt C, Gandy M. Anxiety and depressive disorders in people with epilepsy: a meta-analysis. Epilepsia. 2017;58(6):973–82. https://doi.org/10.1111/epi.13769.

    Article  PubMed  Google Scholar 

  29. Asadi-Pooya AA, Kanemoto K, Kwon OY, Taniguchi G, Dong Z, Chinvarun Y, et al. Depression in people with epilepsy: how much do Asian colleagues acknowledge it? Seizure. 2018;57:45–9. https://doi.org/10.1016/j.seizure.2018.03.012.

    Article  PubMed  Google Scholar 

  30. Tolchin B, Hirsch LJ, LaFrance WC Jr. Neuropsychiatric aspects of epilepsy. Psychiatr Clin North Am. 2020;43(2):275–90. https://doi.org/10.1016/j.psc.2020.02.002.

    Article  PubMed  Google Scholar 

  31. Mula M, Jauch R, Cavanna A, Gaus V, Kretz R, Collimedaglia L, et al. Interictal dysphoric disorder and periictal dysphoric symptoms in patients with epilepsy. Epilepsia. 2010;51(7):1139–45. https://doi.org/10.1111/j.1528-1167.2009.02424.x.

    Article  PubMed  Google Scholar 

  32. Kanner AM. The treatment of depressive disorders in epilepsy: what all neurologists should know. Epilepsia. 2013;54(Suppl 1):3–12. https://doi.org/10.1111/epi.12100.

    Article  CAS  PubMed  Google Scholar 

  33. NIMH. US Department of Health and Human Services, Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality National Survey on Drug Use and Health 2016 (NSDUH-2016-DS0001)2018.

  34. Bautovich A, Katz I, Smith M, Loo CK, Harvey SB. Depression and chronic kidney disease: a review for clinicians. Aust N Z J Psychiatry. 2014;48(6):530–41. https://doi.org/10.1177/0004867414528589.

    Article  PubMed  Google Scholar 

  35. Zhang L, Fu T, Yin R, Zhang Q, Shen B. Prevalence of depression and anxiety in systemic lupus erythematosus: a systematic review and meta-analysis. BMC Psychiatry. 2017;17(1):70. https://doi.org/10.1186/s12888-017-1234-1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brandenbarg D, Maass S, Geerse OP, Stegmann ME, Handberg C, Schroevers MJ, et al. A systematic review on the prevalence of symptoms of depression, anxiety and distress in long-term cancer survivors: implications for primary care. Eur J Cancer Care (Engl). 2019;28(3):e13086. https://doi.org/10.1111/ecc.13086.

    Article  Google Scholar 

  37. • Keezer MR, Sisodiya SM, Sander JW. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol. 2016;15(1):106–15. https://doi.org/10.1016/S1474-4422(15)00225-2A modern review on types of comorbidity (chance, causative, iatrogenic and bidirectional).

    Article  PubMed  Google Scholar 

  38. Hesdorffer DC, Ishihara L, Mynepalli L, Webb DJ, Weil J, Hauser WA. Epilepsy, suicidality, and psychiatric disorders: a bidirectional association. Ann Neurol. 2012;72(2):184–91. https://doi.org/10.1002/ana.23601.

    Article  PubMed  Google Scholar 

  39. • Josephson CB, Lowerison M, Vallerand I, Sajobi TT, Patten S, Jette N, et al. Association of Depression and Treated Depression with Epilepsy and Seizure Outcomes: a multicohort analysis. JAMA Neurol. 2017;74(5):533–9. https://doi.org/10.1001/jamaneurol.2016.5042This study demonstrates that incident epilepsy risk is proportional to depression severity.

    Article  PubMed  Google Scholar 

  40. Dias R, Bateman LM, Farias ST, Li CS, Lin TC, Jorgensen J, et al. Depression in epilepsy is associated with lack of seizure control. Epilepsy Behav. 2010;19(3):445–7. https://doi.org/10.1016/j.yebeh.2010.08.029.

    Article  PubMed  Google Scholar 

  41. Lacey CJ, Salzberg MR, D'Souza WJ. Risk factors for depression in community-treated epilepsy: systematic review. Epilepsy Behav. 2015;43:1–7. https://doi.org/10.1016/j.yebeh.2014.11.023.

    Article  PubMed  Google Scholar 

  42. Hitiris N, Mohanraj R, Norrie J, Sills GJ, Brodie MJ. Predictors of pharmacoresistant epilepsy. Epilepsy Res. 2007;75(2–3):192–6. https://doi.org/10.1016/j.eplepsyres.2007.06.003.

    Article  CAS  PubMed  Google Scholar 

  43. Doherty C, Hogue O, Floden DP, Altemus JB, Najm IM, Eng C, et al. BDNF and COMT, but not APOE, alleles are associated with psychiatric symptoms in refractory epilepsy. Epilepsy Behav. 2019;94:131–6. https://doi.org/10.1016/j.yebeh.2019.02.032.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Torres CM, Siebert M, Bock H, Mota SM, Castan JU, Scornavacca F, et al. Tyrosine receptor kinase B gene variants (NTRK2 variants) are associated with depressive disorders in temporal lobe epilepsy. Epilepsy Behav. 2017;71(Pt A):65–72. https://doi.org/10.1016/j.yebeh.2017.03.030.

    Article  PubMed  Google Scholar 

  45. Vincentiis S, Alcantara J, Rzezak P, Kerr DS, Gattaz WF, van der Linden H Jr, et al. Genetic polymorphisms of the 5HT receptors are not related with depression in temporal lobe epilepsy caused by hippocampal sclerosis. Epilepsy Behav. 2018;83:181–5. https://doi.org/10.1016/j.yebeh.2018.03.032.

    Article  PubMed  Google Scholar 

  46. Lacey CJ, Salzberg MR, D'Souza WJ. Serotonin transporter gene x environment and risk of depression in community-treated epilepsy. Epilepsy Behav. 2014;39:33–7. https://doi.org/10.1016/j.yebeh.2014.07.016.

    Article  PubMed  Google Scholar 

  47. Insel BJ, Ottman R, Heiman GA. Mood disorders in familial epilepsy: a test of shared etiology. Epilepsia. 2018;59(2):431–9. https://doi.org/10.1111/epi.13985.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heiman GA, Kamberakis K, Gill R, Kalachikov S, Pedley TA, Hauser WA, et al. Evaluation of depression risk in LGI1 mutation carriers. Epilepsia. 2010;51(9):1685–90. https://doi.org/10.1111/j.1528-1167.2010.02677.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang Y, Yang M, Shi Q, Wang T, Jiang M. Risk factors for depression in patients with epilepsy: a meta-analysis. Epilepsy Behav. 2020;106:107030. https://doi.org/10.1016/j.yebeh.2020.107030.

    Article  PubMed  Google Scholar 

  50. Thomson AE, Calle A, Fontela ME, Yepez L, Munoz Giacomelli F, Jauregui A, et al. Screening of major depression in epilepsy: the neurologic depression disorders inventory in epilepsy-Spanish version (Argentina). Epilepsia. 2014;55(2):331–4. https://doi.org/10.1111/epi.12503.

    Article  PubMed  Google Scholar 

  51. Ertem DH, Dirican AC, Aydin A, Baybas S, Sozmen V, Ozturk M, et al. Exploring psychiatric comorbidities and their effects on quality of life in patients with temporal lobe epilepsy and juvenile myoclonic epilepsy. Psychiatry Clin Neurosci. 2017;71(4):280–8. https://doi.org/10.1111/pcn.12499.

    Article  PubMed  Google Scholar 

  52. Nogueira MH, Yasuda CL, Coan AC, Kanner AM, Cendes F. Concurrent mood and anxiety disorders are associated with pharmacoresistant seizures in patients with MTLE. Epilepsia. 2017;58(7):1268–76. https://doi.org/10.1111/epi.13781.

    Article  PubMed  Google Scholar 

  53. Park SJ, Lee HB, Ahn MH, Park S, Choi EJ, Lee HJ, et al. Identifying clinical correlates for suicide among epilepsy patients in South Korea: a case-control study. Epilepsia. 2015;56(12):1966–72. https://doi.org/10.1111/epi.13226.

    Article  PubMed  Google Scholar 

  54. Bertram EH. Neuronal circuits in epilepsy: do they matter? Exp Neurol. 2013;244:67–74. https://doi.org/10.1016/j.expneurol.2012.01.028.

    Article  PubMed  Google Scholar 

  55. Liu Z, Mikati M, Holmes GL. Mesial temporal sclerosis: pathogenesis and significance. Pediatr Neurol. 1995;12(1):5–16.

    Article  CAS  PubMed  Google Scholar 

  56. Cole J, Costafreda SG, McGuffin P, Fu CH. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord. 2011;134(1–3):483–7. https://doi.org/10.1016/j.jad.2011.05.057.

    Article  PubMed  Google Scholar 

  57. Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry. 2004;161(11):1957–66. https://doi.org/10.1176/appi.ajp.161.11.1957.

    Article  PubMed  Google Scholar 

  58. Hecimovic H, Santos J, Price JL, Sheline YI, Mintun MA, Snyder AZ, et al. Severe hippocampal atrophy is not associated with depression in temporal lobe epilepsy. Epilepsy Behav. 2014;34:9–14. https://doi.org/10.1016/j.yebeh.2014.02.034.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shamim S, Hasler G, Liew C, Sato S, Theodore WH. Temporal lobe epilepsy, depression, and hippocampal volume. Epilepsia. 2009;50(5):1067–71. https://doi.org/10.1111/j.1528-1167.2008.01883.x.

    Article  PubMed  Google Scholar 

  60. Jansen C, Francomme L, Vignal JP, Jacquot C, Schwan R, Tyvaert L, et al. Interictal psychiatric comorbidities of drug-resistant focal epilepsy: prevalence and influence of the localization of the epilepsy. Epilepsy Behav. 2019;94:288–96. https://doi.org/10.1016/j.yebeh.2018.06.046.

    Article  PubMed  Google Scholar 

  61. Richardson EJ, Griffith HR, Martin RC, Paige AL, Stewart CC, Jones J, et al. Structural and functional neuroimaging correlates of depression in temporal lobe epilepsy. Epilepsy Behav. 2007;10(2):242–9. https://doi.org/10.1016/j.yebeh.2006.11.013.

    Article  PubMed  Google Scholar 

  62. Rayner G, Tailby C, Jackson G, Wilson S. Looking beyond lesions for causes of neuropsychological impairment in epilepsy. Neurology. 2019;92(7):e680–e9. https://doi.org/10.1212/WNL.0000000000006905.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Das J, Rajnikant GK. Post stroke depression: the sequelae of cerebral stroke. Neurosci Biobehav Rev. 2018;90:104–14. https://doi.org/10.1016/j.neubiorev.2018.04.005.

    Article  PubMed  Google Scholar 

  64. Chen S, Wu X, Lui S, Wu Q, Yao Z, Li Q, et al. Resting-state fMRI study of treatment-naive temporal lobe epilepsy patients with depressive symptoms. Neuroimage. 2012;60(1):299–304. https://doi.org/10.1016/j.neuroimage.2011.11.092.

    Article  PubMed  Google Scholar 

  65. Zhu X, He Z, Luo C, Qiu X, He S, Peng A, et al. Altered spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder: a resting-state fMRI study. J Neurol Sci. 2018;386:29–35. https://doi.org/10.1016/j.jns.2018.01.010.

    Article  PubMed  Google Scholar 

  66. Kemmotsu N, Kucukboyaci NE, Leyden KM, Cheng CE, Girard HM, Iragui VJ, et al. Frontolimbic brain networks predict depressive symptoms in temporal lobe epilepsy. Epilepsy Res. 2014;108(9):1554–63. https://doi.org/10.1016/j.eplepsyres.2014.08.018.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kemmotsu N, Kucukboyaci NE, Cheng CE, Girard HM, Tecoma ES, Iragui VJ, et al. Alterations in functional connectivity between the hippocampus and prefrontal cortex as a correlate of depressive symptoms in temporal lobe epilepsy. Epilepsy Behav. 2013;29(3):552–9. https://doi.org/10.1016/j.yebeh.2013.09.039.

    Article  PubMed  Google Scholar 

  68. Hamid H, Liu H, Cong X, Devinsky O, Berg AT, Vickrey BG, et al. Long-term association between seizure outcome and depression after resective epilepsy surgery. Neurology. 2011;77(22):1972–6. https://doi.org/10.1212/WNL.0b013e31823a0c90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pope RA, Thompson PJ, Rantell K, Stretton J, Wright MA, Foong J. Frontal lobe dysfunction as a predictor of depression and anxiety following temporal lobe epilepsy surgery. Epilepsy Res. 2019;152:59–66. https://doi.org/10.1016/j.eplepsyres.2019.03.003.

    Article  PubMed  Google Scholar 

  70. Kandratavicius L, Hallak JE, Carlotti CG, Assirati JA Jr, Leite JP. Neurotrophin receptors expression in mesial temporal lobe epilepsy with and without psychiatric comorbidities and their relation with seizure type and surgical outcome. Acta Neuropathol Commun. 2014;2:81. https://doi.org/10.1186/s40478-014-0081-2.

    Article  PubMed  PubMed Central  Google Scholar 

  71. D'Alessio L, Konopka H, Solis P, Scevola L, Lima MF, Nunez C, et al. Depression and temporal lobe epilepsy: expression pattern of calbindin immunoreactivity in hippocampal dentate gyrus of patients who underwent epilepsy surgery with and without comorbid depression. Behav Neurol. 2019;2019:7396793–12. https://doi.org/10.1155/2019/7396793.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kandratavicius L, Hallak JE, Carlotti CG Jr, Assirati JA Jr, Leite JP. Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia. 2014;55(11):1834–43. https://doi.org/10.1111/epi.12787.

    Article  CAS  PubMed  Google Scholar 

  73. Kandratavicius L, Peixoto-Santos JE, Monteiro MR, Scandiuzzi RC, Carlotti CG Jr, Assirati JA Jr, et al. Mesial temporal lobe epilepsy with psychiatric comorbidities: a place for differential neuroinflammatory interplay. J Neuroinflammation. 2015;12:38. https://doi.org/10.1186/s12974-015-0266-z.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ribot R, Ouyang B, Kanner AM. The impact of antidepressants on seizure frequency and depressive and anxiety disorders of patients with epilepsy: is it worth investigating? Epilepsy Behav. 2017;70(Pt A):5–9. https://doi.org/10.1016/j.yebeh.2017.02.032.

    Article  PubMed  Google Scholar 

  75. Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives. Curr Top Behav Neurosci. 2011;7:121–47. https://doi.org/10.1007/7854_2010_108.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Monteggia LM, Heimer H, Nestler EJ. Meeting report: can we make animal models of human mental illness? Biol Psychiatry. 2018;84(7):542–5. https://doi.org/10.1016/j.biopsych.2018.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34(1):13–25. https://doi.org/10.1016/s0896-6273(02)00653-0.

    Article  CAS  PubMed  Google Scholar 

  78. Gordon JA. A hypothesis-based approach: the use of animals in mental health research. 2019. https://www.nimh.nih.gov/about/director/messages/2019/a-hypothesis-based-approach-the-use-of-animals-in-mental-health-research.shtml.

  79. Jankovic MJ, Kapadia PP, Krishnan V. Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures. PLoS One. 2019;14(11):e0224856. https://doi.org/10.1371/journal.pone.0224856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Loos M, Koopmans B, Aarts E, Maroteaux G, van der Sluis S, Neuro BMPC, et al. Sheltering behavior and locomotor activity in 11 genetically diverse common inbred mouse strains using home-cage monitoring. PLoS One. 2014;9(9):e108563. https://doi.org/10.1371/journal.pone.0108563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wulsin AC, Franco-Villanueva A, Romancheck C, Morano RL, Smith BL, Packard BA, et al. Functional disruption of stress modulatory circuits in a model of temporal lobe epilepsy. PLoS One. 2018;13(5):e0197955. https://doi.org/10.1371/journal.pone.0197955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alexandrov V, Brunner D, Hanania T, Leahy E. High-throughput analysis of behavior for drug discovery. Eur J Pharmacol. 2015;750:82–9. https://doi.org/10.1016/j.ejphar.2014.11.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Datta SR, Anderson DJ, Branson K, Perona P, Leifer A. Computational neuroethology: a call to action. Neuron. 2019;104(1):11–24. https://doi.org/10.1016/j.neuron.2019.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Loscher W, Ferland RJ, Ferraro TN. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy Behav. 2017;73:214–35. https://doi.org/10.1016/j.yebeh.2017.05.040.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172(2):143–57. https://doi.org/10.1016/j.jneumeth.2008.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim JE, Cho KO. The pilocarpine model of temporal lobe epilepsy and EEG monitoring using radiotelemetry system in mice. J Vis Exp. 2018;132. https://doi.org/10.3791/56831.

  87. Welzel L, Schidlitzki A, Twele F, Anjum M, Loscher W. A face-to-face comparison of the intra-amygdala and intrahippocampal kainate mouse models of mesial temporal lobe epilepsy and their utility for testing novel therapies. Epilepsia. 2020;61(1):157–70. https://doi.org/10.1111/epi.16406.

    Article  CAS  PubMed  Google Scholar 

  88. Muller CJ, Groticke I, Bankstahl M, Loscher W. Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Exp Neurol. 2009;219(1):284–97. https://doi.org/10.1016/j.expneurol.2009.05.035.

    Article  CAS  PubMed  Google Scholar 

  89. Pitsch J, Becker AJ, Schoch S, Muller JA, de Curtis M, Gnatkovsky V. Circadian clustering of spontaneous epileptic seizures emerges after pilocarpine-induced status epilepticus. Epilepsia. 2017;58(7):1159–71. https://doi.org/10.1111/epi.13795.

    Article  CAS  PubMed  Google Scholar 

  90. Zeidler Z, Brandt-Fontaine M, Leintz C, Krook-Magnuson C, Netoff T, Krook-Magnuson E. Targeting the mouse ventral hippocampus in the intrahippocampal kainic acid model of temporal lobe epilepsy. eNeuro. 2018;5(4). https://doi.org/10.1523/ENEURO.0158-18.2018.

  91. Fujikawa DG, Shinmei SS, Cai B. Lithium-pilocarpine-induced status epilepticus produces necrotic neurons with internucleosomal DNA fragmentation in adult rats. Eur J Neurosci. 1999;11(5):1605–14. https://doi.org/10.1046/j.1460-9568.1999.00573.x.

    Article  CAS  PubMed  Google Scholar 

  92. Connell P, Bayat A, Joshi S, Koubeissi MZ. Acute and spontaneous seizure onset zones in the intraperitoneal kainic acid model. Epilepsy Behav. 2017;68:66–70. https://doi.org/10.1016/j.yebeh.2016.12.017.

    Article  PubMed  Google Scholar 

  93. Gulec Suyen G, Isbil-Buyukcoskun N, Kahveci N, Sengun E, Ozluk K. Immediate and delayed treatment with gabapentin, carbamazepine and CNQX have almost similar impact on cognitive functions and behavior in the lithium-pilocarpine model in rats. Pharmacol Biochem Behav. 2016;148:128–35. https://doi.org/10.1016/j.pbb.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  94. Ramos FO, Carreiro LR, Scorza FA, Cysneiros RM. Impaired executive functions in experimental model of temporal lobe epilepsy. Arq Neuropsiquiatr. 2016;74(6):470–7. https://doi.org/10.1590/0004-282X20160070.

    Article  PubMed  Google Scholar 

  95. Smolensky IV, Zubareva OE, Kalemenev SV, Lavrentyeva VV, Dyomina AV, Karepanov AA, et al. Impairments in cognitive functions and emotional and social behaviors in a rat lithium-pilocarpine model of temporal lobe epilepsy. Behav Brain Res. 2019;372:112044. https://doi.org/10.1016/j.bbr.2019.112044.

    Article  CAS  PubMed  Google Scholar 

  96. Suleymanova EM, Borisova MA, Vinogradova LV. Early endocannabinoid system activation attenuates behavioral impairments induced by initial impact but does not prevent epileptogenesis in lithium-pilocarpine status epilepticus model. Epilepsy Behav. 2019;92:71–8. https://doi.org/10.1016/j.yebeh.2018.12.001.

    Article  PubMed  Google Scholar 

  97. Bogovyk R, Lunko O, Fedoriuk M, Isaev D, Krishtal O, Holmes GL, et al. Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus. Epilepsy Behav. 2017;67:66–9. https://doi.org/10.1016/j.yebeh.2016.11.003.

    Article  PubMed  Google Scholar 

  98. Mehrabi S, Janahamdi M, Joghataie MT, Barati M, Marzban M, Hadjighassem M, et al. Blockade of p75 neurotrophin receptor reverses irritability and anxiety-related behaviors in a rat model of status epilepticus. Iran Biomed J. 2018;22(4):264–74. https://doi.org/10.22034/ibj.22.4.264.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Semenikhina M, Bogovyk R, Fedoriuk M, Nikolaienko O, Al Kury LT, Savotchenko A, et al. Inhibition of protease-activated receptor 1 ameliorates behavioral deficits and restores hippocampal synaptic plasticity in a rat model of status epilepticus. Neurosci Lett. 2019;692:64–8. https://doi.org/10.1016/j.neulet.2018.10.058.

    Article  CAS  PubMed  Google Scholar 

  100. Smith GD, White J, Lugo JN. Superimposing status epilepticus on neuron subset-specific PTEN haploinsufficient and wild type mice results in long-term changes in behavior. Sci Rep. 2016;6:36559. https://doi.org/10.1038/srep36559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tchekalarova J, Atanasova D, Kortenska L, Atanasova M, Lazarov N. Chronic agomelatine treatment prevents comorbid depression in the post-status epilepticus model of acquired epilepsy through suppression of inflammatory signaling. Neurobiol Dis. 2018;115:127–44. https://doi.org/10.1016/j.nbd.2018.04.005.

    Article  CAS  PubMed  Google Scholar 

  102. Tchekalarova J, Atanasova D, Nenchovska Z, Atanasova M, Kortenska L, Gesheva R, et al. Agomelatine protects against neuronal damage without preventing epileptogenesis in the kainate model of temporal lobe epilepsy. Neurobiol Dis. 2017;104:1–14. https://doi.org/10.1016/j.nbd.2017.04.017.

    Article  CAS  PubMed  Google Scholar 

  103. Kubova H, Folbergrova J, Rejchrtova J, Tsenov G, Parizkova M, Burchfiel J, et al. The free radical scavenger N-Tert-butyl-alpha-phenylnitrone (PBN) administered to immature rats during status epilepticus alters neurogenesis and has variable effects, both beneficial and detrimental, on long-term outcomes. Front Cell Neurosci. 2018;12:266. https://doi.org/10.3389/fncel.2018.00266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ye X, Rong Z, Li Y, Wang X, Cheng B, Cheng Y, et al. Protective role of L-3-n-butylphthalide in cognitive function and dysthymic disorders in mouse with chronic epilepsy. Front Pharmacol. 2018;9:734. https://doi.org/10.3389/fphar.2018.00734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen LL, Wu ML, Zhu F, Kai JJ, Dong JY, Wu XM, et al. Neural progenitor cells Rptor ablation impairs development but benefits to seizure-induced behavioral abnormalities. CNS Neurosci Ther. 2016;22(12):1000–8. https://doi.org/10.1111/cns.12607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet. 2014;5:88. https://doi.org/10.3389/fgene.2014.00088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131(2):391–404. https://doi.org/10.1016/j.cell.2007.09.018.

    Article  CAS  PubMed  Google Scholar 

  108. Willner P. Reliability of the chronic mild stress model of depression: a user survey. Neurobiol Stress. 2017;6:68–77. https://doi.org/10.1016/j.ynstr.2016.08.001.

    Article  PubMed  Google Scholar 

  109. Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav. 2016;15(1):7–26. https://doi.org/10.1111/gbb.12256.

    Article  CAS  PubMed  Google Scholar 

  110. Shuman T, Aharoni D, Cai DJ, Lee CR, Chavlis S, Page-Harley L, et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nat Neurosci. 2020;23(2):229–38. https://doi.org/10.1038/s41593-019-0559-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Klein S, Bankstahl JP, Loscher W, Bankstahl M. Sucrose consumption test reveals pharmacoresistant depression-associated behavior in two mouse models of temporal lobe epilepsy. Exp Neurol. 2015;263:263–71. https://doi.org/10.1016/j.expneurol.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  112. Kumar U, Medel-Matus JS, Redwine HM, Shin D, Hensler JG, Sankar R, et al. Effects of selective serotonin and norepinephrine reuptake inhibitors on depressive- and impulsive-like behaviors and on monoamine transmission in experimental temporal lobe epilepsy. Epilepsia. 2016;57(3):506–15. https://doi.org/10.1111/epi.13321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zanirati G, Azevedo PN, Venturin GT, Greggio S, Alcara AM, Zimmer ER, et al. Depression comorbidity in epileptic rats is related to brain glucose hypometabolism and hypersynchronicity in the metabolic network architecture. Epilepsia. 2018;59:923–34. https://doi.org/10.1111/epi.14057.

    Article  CAS  PubMed  Google Scholar 

  114. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65(1):7–19. https://doi.org/10.1016/j.neuron.2009.11.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ciocchi S, Passecker J, Malagon-Vina H, Mikus N, Klausberger T. Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons. Science. 2015;348(6234):560–3. https://doi.org/10.1126/science.aaa3245.

    Article  CAS  PubMed  Google Scholar 

  116. Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron. 2018;97(3):670–83 e6. https://doi.org/10.1016/j.neuron.2018.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, et al. Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral Hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology. 2017;42(8):1715–28. https://doi.org/10.1038/npp.2017.56.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, et al. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron. 2016;89(4):857–66. https://doi.org/10.1016/j.neuron.2016.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sweeney P, Yang Y. An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding. Nat Commun. 2015;6:10188. https://doi.org/10.1038/ncomms10188.

    Article  CAS  PubMed  Google Scholar 

  120. Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science. 2016;353(6307):1536–41. https://doi.org/10.1126/science.aaf7003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bagot RC, Parise EM, Pena CJ, Zhang HX, Maze I, Chaudhury D, et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun. 2015;6:7062. https://doi.org/10.1038/ncomms8062.

    Article  CAS  PubMed  Google Scholar 

  122. Desloovere J, Boon P, Larsen LE, Merckx C, Goossens MG, Van den Haute C, et al. Long-term chemogenetic suppression of spontaneous seizures in a mouse model for temporal lobe epilepsy. Epilepsia. 2019;60(11):2314–24. https://doi.org/10.1111/epi.16368.

    Article  CAS  PubMed  Google Scholar 

  123. Pineda E, Shin D, Sankar R, Mazarati AM. Comorbidity between epilepsy and depression: experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia. 2010;51(Suppl 3):110–4. https://doi.org/10.1111/j.1528-1167.2010.02623.x.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Vermoesen K, Massie A, Smolders I, Clinckers R. The antidepressants citalopram and reboxetine reduce seizure frequency in rats with chronic epilepsy. Epilepsia. 2012;53(5):870–8. https://doi.org/10.1111/j.1528-1167.2012.03436.x.

    Article  CAS  PubMed  Google Scholar 

  125. Medel-Matus JS, Shin D, Sankar R, Mazarati A. Inherent vulnerabilities in monoaminergic pathways predict the emergence of depressive impairments in an animal model of chronic epilepsy. Epilepsia. 2017;58(8):e116–e21. https://doi.org/10.1111/epi.13822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Epps SA, Tabb KD, Lin SJ, Kahn AB, Javors MA, Boss-Williams KA, et al. Seizure susceptibility and epileptogenesis in a rat model of epilepsy and depression co-morbidity. Neuropsychopharmacology. 2012;37(13):2756–63. https://doi.org/10.1038/npp.2012.141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Castren E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis. 2017;97(Pt B):119–26. https://doi.org/10.1016/j.nbd.2016.07.010.

    Article  CAS  PubMed  Google Scholar 

  128. Carlino D, De Vanna M, Tongiorgi E. Is altered BDNF biosynthesis a general feature in patients with cognitive dysfunctions? Neuroscientist. 2013;19(4):345–53. https://doi.org/10.1177/1073858412469444.

    Article  CAS  PubMed  Google Scholar 

  129. Becker C, Bouvier E, Ghestem A, Siyoucef S, Claverie D, Camus F, et al. Predicting and treating stress-induced vulnerability to epilepsy and depression. Ann Neurol. 2015;78(1):128–36. https://doi.org/10.1002/ana.24414.

    Article  PubMed  Google Scholar 

  130. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14(3):347–53. https://doi.org/10.1017/S1461145710000738.

    Article  CAS  PubMed  Google Scholar 

  131. Gu B, Huang YZ, He XP, Joshi RB, Jang W, McNamara JO. A peptide uncoupling BDNF receptor TrkB from phospholipase Cgamma1 prevents epilepsy induced by status epilepticus. Neuron. 2015;88(3):484–91. https://doi.org/10.1016/j.neuron.2015.09.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. O'Toole KK, Hooper A, Wakefield S, Maguire J. Seizure-induced disinhibition of the HPA axis increases seizure susceptibility. Epilepsy Res. 2014;108(1):29–43. https://doi.org/10.1016/j.eplepsyres.2013.10.013.

    Article  CAS  PubMed  Google Scholar 

  133. Mazarati AM, Shin D, Kwon YS, Bragin A, Pineda E, Tio D, et al. Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiol Dis. 2009;34(3):457–61. https://doi.org/10.1016/j.nbd.2009.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hooper A, Paracha R, Maguire J. Seizure-induced activation of the HPA axis increases seizure frequency and comorbid depression-like behaviors. Epilepsy Behav. 2018;78:124–33. https://doi.org/10.1016/j.yebeh.2017.10.025.

    Article  PubMed  Google Scholar 

  135. Maguire J, Salpekar JA. Stress, seizures, and hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Epilepsy Behav. 2013;26(3):352–62. https://doi.org/10.1016/j.yebeh.2012.09.040.

    Article  PubMed  Google Scholar 

  136. Demuyser T, Bentea E, Deneyer L, Albertini G, Massie A, Smolders I. Disruption of the HPA-axis through corticosterone-release pellets induces robust depressive-like behavior and reduced BDNF levels in mice. Neurosci Lett. 2016;626:119–25. https://doi.org/10.1016/j.neulet.2016.05.026.

    Article  CAS  PubMed  Google Scholar 

  137. • Chen B, Choi H, Hirsch LJ, Katz A, Legge A, Buchsbaum R, et al. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 2017;76:24–31. https://doi.org/10.1016/j.yebeh.2017.08.039A large retrospective chart review of anticonvulsant psychiatric and behavioral side effects.

    Article  PubMed  Google Scholar 

  138. Chen B, Choi H, Hirsch LJ, Legge A, Buchsbaum R, Detyniecki K. Cross-sensitivity of psychiatric and behavioral side effects with antiepileptic drug use. Seizure. 2018;62:38–42. https://doi.org/10.1016/j.seizure.2018.09.014.

    Article  PubMed  Google Scholar 

  139. Chen B, Detyniecki K, Choi H, Hirsch L, Katz A, Legge A, et al. Psychiatric and behavioral side effects of anti-epileptic drugs in adolescents and children with epilepsy. Eur J Paediatr Neurol. 2017;21(3):441–9. https://doi.org/10.1016/j.ejpn.2017.02.003.

    Article  CAS  PubMed  Google Scholar 

  140. Jabeen SA, Gaddamanugu P, Cherian A, Mridula KM, Kumar DU, Meena AK. Levetiracetam-associated psychogenic non-epileptic seizures; a hidden paradox. J Popul Ther Clin Pharmacol. 2018;25(2):e1–e11. https://doi.org/10.22374/1710-6222.25.2.1.

    Article  PubMed  Google Scholar 

  141. Grimaldi-Bensouda L, Nordon C, Rossignol M, Jardon V, Boss V, Warembourg F, et al. Antiepileptic drugs and risk of suicide attempts: a case-control study exploring the impact of underlying medical conditions. Pharmacoepidemiol Drug Saf. 2017;26(3):239–47. https://doi.org/10.1002/pds.4160.

    Article  CAS  PubMed  Google Scholar 

  142. Dreier JW, Pedersen CB, Gasse C, Christensen J. Antiepileptic drugs and suicide: role of prior suicidal behavior and parental psychiatric disorder. Ann Neurol. 2019;86(6):951–61. https://doi.org/10.1002/ana.25623.

    Article  PubMed  Google Scholar 

  143. Steinhoff BJ, Staack AM. Levetiracetam and brivaracetam: a review of evidence from clinical trials and clinical experience. Ther Adv Neurol Disord. 2019;12:1756286419873518. https://doi.org/10.1177/1756286419873518.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Garcia-Perez E, Mahfooz K, Covita J, Zandueta A, Wesseling JF. Levetiracetam accelerates the onset of supply rate depression in synaptic vesicle trafficking. Epilepsia. 2015;56(4):535–45. https://doi.org/10.1111/epi.12930.

    Article  CAS  PubMed  Google Scholar 

  145. Wood MD, Gillard M. Evidence for a differential interaction of brivaracetam and levetiracetam with the synaptic vesicle 2A protein. Epilepsia. 2017;58(2):255–62. https://doi.org/10.1111/epi.13638.

    Article  CAS  PubMed  Google Scholar 

  146. Wood MD, Sands ZA, Vandenplas C, Gillard M. Further evidence for a differential interaction of brivaracetam and levetiracetam with the synaptic vesicle 2A protein. Epilepsia. 2018;59(9):e147–e51. https://doi.org/10.1111/epi.14532.

    Article  CAS  PubMed  Google Scholar 

  147. Niespodziany I, Rigo JM, Moonen G, Matagne A, Klitgaard H, Wolff C. Brivaracetam does not modulate ionotropic channels activated by glutamate, gamma-aminobutyric acid, and glycine in hippocampal neurons. Epilepsia. 2017;58(11):e157–e61. https://doi.org/10.1111/epi.13890.

    Article  CAS  PubMed  Google Scholar 

  148. Theochari E, Cock H, Lozsadi D, Galtrey C, Arevalo J, Mula M. Brivaracetam in adults with drug-resistant epilepsy and psychiatric comorbidities. Epilepsy Behav. 2019;90:129–31. https://doi.org/10.1016/j.yebeh.2018.11.032.

    Article  PubMed  Google Scholar 

  149. Yates SL, Fakhoury T, Liang W, Eckhardt K, Borghs S, D'Souza J. An open-label, prospective, exploratory study of patients with epilepsy switching from levetiracetam to brivaracetam. Epilepsy Behav. 2015;52(Pt A):165–8. https://doi.org/10.1016/j.yebeh.2015.09.005.

    Article  PubMed  Google Scholar 

  150. Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR, et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A. 1999;96(26):15268–73. https://doi.org/10.1073/pnas.96.26.15268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Menten-Dedoyart C, Serrano Navacerrada ME, Bartholome O, Sanchez Gil J, Neirinckx V, Wislet S, et al. Development and validation of a new mouse model to investigate the role of SV2A in epilepsy. PLoS One. 2016;11(11):e0166525. https://doi.org/10.1371/journal.pone.0166525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lamberty Y, Detrait E, Leclercq K, Michel A, De Ryck M. Behavioural phenotyping reveals anxiety-like features of SV2A deficient mice. Behav Brain Res. 2009;198(2):329–33. https://doi.org/10.1016/j.bbr.2008.11.005.

    Article  PubMed  Google Scholar 

  153. Sanon NT, Gagne J, Wolf DC, Aboulamer S, Bosoi CM, Simard A, et al. Favorable adverse effect profile of brivaracetam vs levetiracetam in a preclinical model. Epilepsy Behav. 2018;79:117–25. https://doi.org/10.1016/j.yebeh.2017.11.019.

    Article  PubMed  Google Scholar 

  154. Alsaadi T, El Hammasi K, Shahrour TM. Does pyridoxine control behavioral symptoms in adult patients treated with levetiracetam? Case series from UAE. Epilepsy Behav Case Rep. 2015;4:94–5. https://doi.org/10.1016/j.ebcr.2015.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Marino S, Vitaliti G, Marino SD, Pavone P, Provvidenti S, Romano C, et al. Pyridoxine add-on treatment for the control of behavioral adverse effects induced by Levetiracetam in children: a case-control prospective study. Ann Pharmacother. 2018;52(7):645–9. https://doi.org/10.1177/1060028018759637.

    Article  CAS  PubMed  Google Scholar 

  156. Taneja R, Hunter K, Burakgazi-Dalkilic E, Carran M. Effect of sleep patterns on levetiracetam induced mood changes. Epilepsy Behav. 2017;75:237–40. https://doi.org/10.1016/j.yebeh.2017.07.038.

    Article  PubMed  Google Scholar 

  157. Wicht H, Korf HW, Ackermann H, Ekhart D, Fischer C, Pfeffer M. Chronotypes and rhythm stability in mice. Chronobiol Int. 2014;31(1):27–36. https://doi.org/10.3109/07420528.2013.820739.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishnav Krishnan.

Ethics declarations

Conflict of Interest

VK receives research funding from the National Institutes of Health (1K08NS110924-01), seed funding from the Office of Research at the Baylor College of Medicine, and funding from SK Pharmaceuticals for a laboratory testing agreement unrelated to the topic of this review. VK also serves as member of the National Institutes of Neurological Disorders and Stroke/American Epilepsy Society Epilepsy Research Benchmarks Committee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, V. Depression and Anxiety in the Epilepsies: from Bench to Bedside. Curr Neurol Neurosci Rep 20, 41 (2020). https://doi.org/10.1007/s11910-020-01065-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01065-z

Keywords

Navigation