Skip to main content

Advertisement

Log in

Neurologic Consequences of Preterm Birth

  • Neurology of Systemic Diseases (J Biller, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Preterm birth is the leading cause of death worldwide in children < 5 years of age; however, technology and advances in medical knowledge are increasing the survival of children born even at the fringes of viability. With increased survival comes increased risk of long-term neurologic impairments. This paper aims to review recent findings related to changes in brain development associated with prematurity and its impact on neurodevelopmental disabilities.

Recent Findings

Advanced imaging techniques, longitudinal follow-up of individuals born extremely preterm into adulthood and improved understanding of risk factors associated with neurologic impairment contribute to recent discoveries. Sensory impairments are often associated with later cognitive and social impairments and therefore represent targets for therapy.

Summary

All aspects of neurologic development can be affected by preterm delivery. Future research is needed to further elucidate targets for prenatal and postnatal interventions for neuroprotection and to improve outcomes of prematurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GA:

Gestational age

IVH:

Intraventricular hemorrhage

MRI:

Magnetic resonance imaging

IQ:

Intelligence quotient

ADC:

Apparent diffusion coefficient

MRS:

Magnetic resonance spectroscopy

DTI:

Diffusion tensor imaging

CP:

Cerebral palsy

ROP:

Retinopathy of prematurity

NICU:

Neonatal intensive care unit

ÉPIPAGE Cohort:

Epidemiological study of premature infants (étude épidémiologique sur les petits âges gestationnels)

DCD:

Developmental coordination disorder

DSM:

Diagnostic and Statistical Manual of Mental Disorders

ADHD:

Attention deficit hyperactivity disorder

ELGAN:

Extremely low gestational age newborns

ASD:

Autism spectrum disorder

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016;388(10063):3027–35.

    Article  PubMed  PubMed Central  Google Scholar 

  2. •• Younge N, Goldstein RF, Bann CM, Hintz SR, Patel RM, Smith PB, et al. Survival and neurodevelopmental outcomes among periviable infants. N Engl J Med. 2017;376(7):617–28. Neonatal Research Network study of outcomes of infants born at 22-24 weeks gestational age over an 11-year period followed up at 18-22 months. This large cohort over a decade was able to reveal trends over the period of the study.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Younge N, Goldstein RF, Cotten CM, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Survival and neurodevelopment of periviable infants. N Engl J Med. 2017;376(19):1890–1.

    Article  PubMed  Google Scholar 

  4. Hubel DH, Wiesel TN. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci. 1977;198(1130):1–59.

    Article  PubMed  CAS  Google Scholar 

  5. Greenough WT, West RW, DeVoogd TJ. Subsynaptic plate perforations: changes with age and experience in the rat. Science. 1978;202(4372):1096–8.

    Article  PubMed  CAS  Google Scholar 

  6. Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 2004;1(4):351–63.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nosarti C, Nam KW, Walshe M, Murray RM, Cuddy M, Rifkin L, et al. Preterm birth and structural brain alterations in early adulthood. Neuroimage Clin. 2014;6:180–91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Walsh JM, Doyle LW, Anderson PJ, Lee KJ, Cheong JLY. Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age. Radiology. 2014;273(1):232–40.

    Article  PubMed  Google Scholar 

  9. • Bjuland KJ, Rimol LM, Løhaugen GCC, Skranes J. Brain volumes and cognitive function in very-low-birth-weight (VLBW) young adults. Eur J Paediatr Neurol. 2014;18(5):578–90. This study is one of the few that performed neuroimaging in adults born prematurely..

    Article  PubMed  Google Scholar 

  10. Viola A, Confort-Gouny S, Schneider JF, le Fur Y, Viout P, Chapon F, et al. Is brain maturation comparable in fetuses and premature neonates at term equivalent age? AJNR Am J Neuroradiol. 2011;32(8):1451–8.

    Article  PubMed  CAS  Google Scholar 

  11. Akazawa K, Chang L, Yamakawa R, Hayama S, Buchthal S, Alicata D, et al. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants. Neuroimage. 2016;128:167–79.

    Article  PubMed  Google Scholar 

  12. Åkerblom H, Andreasson S, Holmström G. Macular function in preterm children at school age. Doc Ophthalmol. 2016;133(3):151–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Braddick O, Atkinson J, Wattam-Bell J. VERP and brain imaging for identifying levels of visual dorsal and ventral stream function in typical and preterm infants. Prog Brain Res. 2011;189:95–111.

    Article  PubMed  Google Scholar 

  14. Taylor NM, Jakobson LS, Maurer D, Lewis TL. Differential vulnerability of global motion, global form, and biological motion processing in full-term and preterm children. Neuropsychologia. 2009;47(13):2766–78.

    Article  PubMed  CAS  Google Scholar 

  15. Sripada K, Løhaugen GC, Eikenes L, Bjørlykke KM, Håberg AK, Skranes J, et al. Visual-motor deficits relate to altered gray and white matter in young adults born preterm with very low birth weight. Neuroimage. 2015;109:493–504.

    Article  PubMed  Google Scholar 

  16. Kavsek M, Bornstein MH. Visual habituation and dishabituation in preterm infants: a review and meta-analysis. Res Dev Disabil. 2010;31(5):951–75.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weber P, Depoorter A, Hetzel P, Lemola S. Habituation as parameter for prediction of mental development in healthy preterm infants: an electrophysiological pilot study. J Child Neurol. 2016;31(14):1591–7.

    Article  PubMed  Google Scholar 

  18. American Academy of Pediatrics, J.i.C.o.I.H. Position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics. 2007;120(4):898–921.

    Article  Google Scholar 

  19. Robertson CM, et al. Permanent bilateral sensory and neural hearing loss of children after neonatal intensive care because of extreme prematurity: a thirty-year study. Pediatrics. 2009;123(5):e797–807.

    Article  PubMed  Google Scholar 

  20. van Dommelen P, Verkerk PH, van Straaten HLM, Baerts W, von Weissenbruch M, Duijsters C, et al. Hearing loss by week of gestation and birth weight in very preterm neonates. J Pediatr. 2015;166(4):840–843.e1.

    Article  PubMed  Google Scholar 

  21. Mahmoudzadeh M, Dehaene-Lambertz G, Fournier M, Kongolo G, Goudjil S, Dubois J, et al. Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc Natl Acad Sci U S A. 2013;110(12):4846–51.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McMahon E, Wintermark P, Lahav A. Auditory brain development in premature infants: the importance of early experience. Ann N Y Acad Sci. 2012;1252:17–24.

    Article  PubMed  Google Scholar 

  23. Baldoli C, Scola E, Della Rosa PA, Pontesilli S, Longaretti R, Poloniato A, et al. Maturation of preterm newborn brains: a fMRI-DTI study of auditory processing of linguistic stimuli and white matter development. Brain Struct Funct. 2015;220(6):3733–51.

    Article  PubMed  Google Scholar 

  24. Wachman EM, Lahav A. The effects of noise on preterm infants in the NICU. Arch Dis Child Fetal Neonatal Ed. 2011;96(4):F305–9.

    Article  PubMed  Google Scholar 

  25. Lejeune F, Parra J, Berne-Audéoud F, Marcus L, Barisnikov K, Gentaz E, et al. Sound interferes with the early tactile manual abilities of preterm infants. Sci Rep. 2016;6:23329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Webb AR, Heller HT, Benson CB, Lahav A. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc Natl Acad Sci U S A. 2015;112(10):3152–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Grunau RE, Weinberg J, Whitfield MF. Neonatal procedural pain and preterm infant cortisol response to novelty at 8 months. Pediatrics. 2004;114(1):e77–84.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vinall J, Miller SP, Bjornson BH, Fitzpatrick KPV, Poskitt KJ, Brant R, et al. Invasive procedures in preterm children: brain and cognitive development at school age. Pediatrics. 2014;133(3):412–21.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brummelte S, Grunau RE, Zaidman-Zait A, Weinberg J, Nordstokke D, Cepeda IL. Cortisol levels in relation to maternal interaction and child internalizing behavior in preterm and full-term children at 18 months corrected age. Dev Psychobiol. 2011;53(2):184–95.

    Article  PubMed  CAS  Google Scholar 

  30. Ranger M, Chau CMY, Garg A, Woodward TS, Beg MF, Bjornson B, et al. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm. PLoS One. 2013;8(10):e76702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Doesburg SM, Chau CM, Cheung TPL, Moiseev A, Ribary U, Herdman AT, et al. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age. Pain. 2013;154(10):1946–52.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Machado ACCP, et al. Sensory processing during childhood in preterm infants: a systematic review. Rev Paul Pediatr. 2017;35(1):92–101.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barton EE, Reichow B, Schnitz A, Smith IC, Sherlock D. A systematic review of sensory-based treatments for children with disabilities. Res Dev Disabil. 2015;37:64–80.

    Article  PubMed  Google Scholar 

  34. Bloomfield FH, Alexander T, Muelbert M, Beker F. Smell and taste in the preterm infant. Early Hum Dev. 2017;114:31–4.

    Article  PubMed  Google Scholar 

  35. Lipchock SV, Reed DR, Mennella JA. The gustatory and olfactory systems during infancy: implications for development of feeding behaviors in the high-risk neonate. Clin Perinatol. 2011;38(4):627–41.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Varendi H, Porter RH, Winberg J. Attractiveness of amniotic fluid odor: evidence of prenatal olfactory learning? Acta Paediatr. 1996;85(10):1223–7.

    Article  PubMed  CAS  Google Scholar 

  37. Delaunay-El Allam M, et al. Long-lasting memory for an odor acquired at the mother’s breast. Dev Sci. 2010;13(6):849–63.

    Article  PubMed  Google Scholar 

  38. Bartocci M, Winberg J, Papendieck G, Mustica T, Serra G, Lagercrantz H. Cerebral hemodynamic response to unpleasant odors in the preterm newborn measured by near-infrared spectroscopy. Pediatr Res. 2001;50(3):324–30.

    Article  PubMed  CAS  Google Scholar 

  39. Beker F, Opie G, Noble E, Jiang Y, Bloomfield FH. Smell and taste to improve nutrition in very preterm infants: a randomized controlled pilot trial. Neonatology. 2017;111(3):260–6.

    Article  PubMed  Google Scholar 

  40. Yildiz A, Arikan D, Gözüm S, Taştekın A, Budancamanak I. The effect of the odor of breast milk on the time needed for transition from gavage to total oral feeding in preterm infants. J Nurs Scholarsh. 2011;43(3):265–73.

    PubMed  Google Scholar 

  41. Crump C, Winkleby MA, Sundquist K, Sundquist J. Risk of diabetes among young adults born preterm in Sweden. Diabetes Care. 2011;34(5):1109–13.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Crump C, Winkleby MA, Sundquist K, Sundquist J. Risk of hypertension among young adults who were born preterm: a Swedish national study of 636,000 births. Am J Epidemiol. 2011;173(7):797–803.

    Article  PubMed  PubMed Central  Google Scholar 

  43. van Haastert IC, de Vries LS, Helders PJM, Jongmans MJ. Early gross motor development of preterm infants according to the Alberta Infant Motor Scale. J Pediatr. 2006;149(5):617–22.

    Article  PubMed  Google Scholar 

  44. van Dokkum NH, de Kroon MLA, Bos AF, Reijneveld SA, Kerstjens JM. Attainment of gross motor milestones by preterm children with normal development upon school entry. Early Hum Dev. 2018;119:62–7.

    Article  PubMed  Google Scholar 

  45. Bracewell M, Marlow N. Patterns of motor disability in very preterm children. Ment Retard Dev Disabil Res Rev. 2002;8(4):241–8.

    Article  PubMed  Google Scholar 

  46. Fallang B, Hadders-Algra M. Postural behavior in children born preterm. Neural Plast. 2005;12(2–3):175–82. discussion 263-72

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marlow N, Wolke D, Bracewell MA, Samara M, EPICure Study Group. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med. 2005;352(1):9–19.

    Article  PubMed  CAS  Google Scholar 

  48. Dahan-Oliel N, Mazer B, Riley P, Maltais DB, Nadeau L, Majnemer A. Participation and enjoyment of leisure activities in adolescents born at ≤ 29 week gestation. Early Hum Dev. 2014;90(6):307–14.

    Article  PubMed  Google Scholar 

  49. Himpens E, van den Broeck C, Oostra A, Calders P, Vanhaesebrouck P. Prevalence, type, distribution, and severity of cerebral palsy in relation to gestational age: a meta-analytic review. Dev Med Child Neurol. 2008;50(5):334–40.

    Article  PubMed  CAS  Google Scholar 

  50. Ancel PY, Livinec F, Larroque B, Marret S, Arnaud C, Pierrat V, et al. Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrasound abnormalities: the EPIPAGE cohort study. Pediatrics. 2006;117(3):828–35.

    Article  PubMed  Google Scholar 

  51. McIntyre S, Morgan C, Walker K, Novak I. Cerebral palsy—don’t delay. Dev Disabil Res Rev. 2011;17(2):114–29.

    Article  PubMed  Google Scholar 

  52. Vincer MJ, Allen AC, Joseph KS, Stinson DA, Scott H, Wood E. Increasing prevalence of cerebral palsy among very preterm infants: a population-based study. Pediatrics. 2006;118(6):e1621–6.

    Article  PubMed  Google Scholar 

  53. Beaino G, et al. Predictors of cerebral palsy in very preterm infants: the EPIPAGE prospective population-based cohort study. Dev Med Child Neurol. 2010;52(6):e119–25.

    Article  PubMed  Google Scholar 

  54. • Spittle A, Orton J, Anderson PJ, Boyd R, Doyle LW. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev 2015;776(11): p. CD005495 Review of effectiveness of developmental interventions which highlights the importance of early therapy.

  55. Spittle AJ, Boyd RN, Inder TE, Doyle LW. Predicting motor development in very preterm infants at 12 months’ corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics. 2009;123(2):512–7.

    Article  PubMed  Google Scholar 

  56. Spittle AJ, Orton J. Cerebral palsy and developmental coordination disorder in children born preterm. Semin Fetal Neonatal Med. 2014;19(2):84–9.

    Article  PubMed  Google Scholar 

  57. Marlow N, Hennessy EM, Bracewell MA, Wolke D, for the EPICure Study Group. Motor and executive function at 6 years of age after extremely preterm birth. Pediatrics. 2007;120(4):793–804.

    Article  PubMed  Google Scholar 

  58. Serenius F, Ewald U, Farooqi A, Fellman V, Hafström M, Hellgren K, et al. Neurodevelopmental outcomes among extremely preterm infants 6.5 years after active perinatal care in Sweden. JAMA Pediatr. 2016;170(10):954–63.

    Article  PubMed  Google Scholar 

  59. Marret S, Marchand-Martin L, Picaud JC, Hascoët JM, Arnaud C, Rozé JC, et al. Brain injury in very preterm children and neurosensory and cognitive disabilities during childhood: the EPIPAGE cohort study. PLoS One. 2013;8(5):e62683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. • Hirschberger RG, et al. Co-occurrence and severity of neurodevelopmental burden (cognitive impairment, cerebral palsy, autism spectrum disorder, and epilepsy) at age ten years in children born extremely preterm. Pediatr Neurol. 2018;79:45–52. This study described long-term outcomes related to multiple neurodevelopmental impairments.

    Article  PubMed  Google Scholar 

  61. Saigal S, Ouden L, Wolke D, Hoult L, Paneth N, Streiner DL, et al. School-age outcomes in children who were extremely low birth weight from four international population-based cohorts. Pediatrics. 2003;112(4):943–50.

    Article  PubMed  Google Scholar 

  62. Young JM, Morgan BR, Powell TL, Moore AM, Whyte HEA, Smith ML, et al. Associations of perinatal clinical and magnetic resonance imaging measures with developmental outcomes in children born very preterm. J Pediatr. 2016;170:90–6.

    Article  PubMed  Google Scholar 

  63. Beaino G, Khoshnood B, Kaminski M, Marret S, Pierrat V, Vieux R, et al. Predictors of the risk of cognitive deficiency in very preterm infants: the EPIPAGE prospective cohort. Acta Paediatr. 2011;100(3):370–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shah PE, Kaciroti N, Richards B, Lumeng JC. Gestational age and kindergarten school readiness in a national sample of preterm infants. J Pediatr. 2016;178:61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Akshoomoff N, Joseph RM, Taylor HG, Allred EN, Heeren T, OʼShea TM, et al. Academic achievement deficits and their neuropsychological correlates in children born extremely preterm. J Dev Behav Pediatr. 2017;38(8):627–37.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sucksdorff M, Lehtonen L, Chudal R, Suominen A, Joelsson P, Gissler M, et al. Preterm birth and poor fetal growth as risk factors of attention-deficit/hyperactivity disorder. Pediatrics. 2015;136(3):e599–608.

    Article  PubMed  Google Scholar 

  67. Leviton A, Hooper SR, Hunter SJ, Scott MN, Allred EN, Joseph RM, et al. Antecedents of screening positive for attention deficit hyperactivity disorder in ten-year-old children born extremely preterm. Pediatr Neurol. 2018;81:25–30.

    Article  PubMed  Google Scholar 

  68. Scott MN, Hunter SJ, Joseph RM, OʼShea TM, Hooper SR, Allred EN, et al. Neurocognitive correlates of attention-deficit hyperactivity disorder symptoms in children born at extremely low gestational age. J Dev Behav Pediatr. 2017;38(4):249–59.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sansavini A, Guarini A, Justice LM, Savini S, Broccoli S, Alessandroni R, et al. Does preterm birth increase a child’s risk for language impairment? Early Hum Dev. 2010;86(12):765–72.

    Article  PubMed  Google Scholar 

  70. Zerbeto AB, Cortelo FM, Filho ÉC. Association between gestational age and birth weight on the language development of Brazilian children: a systematic review. J Pediatr. 2015;91(4):326–32.

    Article  Google Scholar 

  71. Ionio C, Riboni E, Confalonieri E, Dallatomasina C, Mascheroni E, Bonanomi A, et al. Paths of cognitive and language development in healthy preterm infants. Infant Behav Dev. 2016;44:199–207.

    Article  PubMed  Google Scholar 

  72. • Caskey M, Stephens B, Tucker R, Vohr B. Adult talk in the NICU with preterm infants and developmental outcomes. Pediatrics. 2014;133(3):e578–84. This study highlights NICU practices and exposure of voice.

    Article  PubMed  Google Scholar 

  73. Kwon SH, Scheinost D, Vohr B, Lacadie C, Schneider K, Dai F, et al. Functional magnetic resonance connectivity studies in infants born preterm: suggestions of proximate and long-lasting changes in language organization. Dev Med Child Neurol. 2016;58 Suppl 4:28–34.

    Article  PubMed  Google Scholar 

  74. Aeby A, de Tiège X, Creuzil M, David P, Balériaux D, van Overmeire B, et al. Language development at 2 years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: a diffusion tensor imaging study. Neuroimage. 2013;78:145–51.

    Article  PubMed  Google Scholar 

  75. van Noort-van der Spek IL, Franken MC, Weisglas-Kuperus N. Language functions in preterm-born children: a systematic review and meta-analysis. Pediatrics. 2012;129(4):745–54.

    Article  PubMed  Google Scholar 

  76. Barde LH, et al. Differences in neural activation between preterm and full term born adolescents on a sentence comprehension task: implications for educational accommodations. Dev Cogn Neurosci. 2012;2(Suppl 1):S114–28.

    Article  PubMed  Google Scholar 

  77. De Schuymer L, et al. Preverbal skills as mediators for language outcome in preterm and full term children. Early Hum Dev. 2011;87(4):265–72.

    Article  PubMed  Google Scholar 

  78. Shoemark H, Hanson-Abromeit D, Stewart L. Constructing optimal experience for the hospitalized newborn through neuro-based music therapy. Front Hum Neurosci. 2015;9:487.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Standley J. Music therapy research in the NICU: an updated meta-analysis. Neonatal Netw. 2012;31(5):311–6.

    Article  PubMed  Google Scholar 

  80. Allen KA. Music therapy in the NICU: is there evidence to support integration for procedural support? Adv Neonatal Care. 2013;13(5):349–52.

    Article  PubMed  Google Scholar 

  81. Asztalos EV, Church PT, Riley P, Fajardo C, Shah PS, Canadian Neonatal Network and Canadian Neonatal Follow-up Network Investigators. Association between primary caregiver education and cognitive and language development of preterm neonates. Am J Perinatol. 2017;34(4):364–71.

    PubMed  Google Scholar 

  82. Johnson S, Marlow N. Preterm birth and childhood psychiatric disorders. Pediatr Res. 2011;69(5 Pt 2):11R–8R.

    Article  PubMed  Google Scholar 

  83. Arpi E, Ferrari F. Preterm birth and behaviour problems in infants and preschool-age children: a review of the recent literature. Dev Med Child Neurol. 2013;55(9):788–96.

    Article  PubMed  Google Scholar 

  84. Burnett AC, Anderson PJ, Cheong J, Doyle LW, Davey CG, Wood SJ. Prevalence of psychiatric diagnoses in preterm and full-term children, adolescents and young adults: a meta-analysis. Psychol Med. 2011;41(12):2463–74.

    Article  PubMed  CAS  Google Scholar 

  85. • Eryigit-Madzwamuse S, Strauss V, Baumann N, Bartmann P, Wolke D. Personality of adults who were born very preterm. Arch Dis Child Fetal Neonatal Ed. 2015;100(6):F524–9. The conclusion of this study attempts to generalize a preterm personality which can lead to inferences about psychological comorbidities of prematurity.

    Article  PubMed  Google Scholar 

  86. Healy E, Reichenberg A, Nam KW, Allin MPG, Walshe M, Rifkin L, et al. Preterm birth and adolescent social functioning-alterations in emotion-processing brain areas. J Pediatr. 2013;163(6):1596–604.

    Article  PubMed  Google Scholar 

  87. Williamson KE, Jakobson LS. Social perception in children born at very low birthweight and its relationship with social/behavioral outcomes. J Child Psychol Psychiatry. 2014;55(9):990–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, Yin L, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry. 2012;69(6):E1–8.

    Article  PubMed  Google Scholar 

  89. Kroll J, Froudist-Walsh S, Brittain PJ, Tseng CEJ, Karolis V, Murray RM, et al. A dimensional approach to assessing psychiatric risk in adults born very preterm. Psychol Med. 2018:1–7.

  90. Papini C, White TP, Montagna A, Brittain PJ, Froudist-Walsh S, Kroll J, et al. Altered resting-state functional connectivity in emotion-processing brain regions in adults who were born very preterm. Psychol Med. 2016;46(14):3025–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zmyj N, Witt S, Weitkämper A, Neumann H, Lücke T. Social cognition in children born preterm: a perspective on future research directions. Front Psychol. 2017;8:455.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Smith L, Ulvund S. The role of joint attention in later development among preterm children: linkages between early and middle childhood. Soc Dev. 2003;12(2):222–34.

    Article  Google Scholar 

  93. Telford EJ, Fletcher-Watson S, Gillespie-Smith K, Pataky R, Sparrow S, Murray IC, et al. Preterm birth is associated with atypical social orienting in infancy detected using eye tracking. J Child Psychol Psychiatry. 2016;57(7):861–8.

    Article  PubMed  Google Scholar 

  94. De Schuymer L, et al. Gaze aversion during social interaction in preterm infants: a function of attention skills? Infant Behav Dev. 2012;35(1):129–39.

    Article  PubMed  Google Scholar 

  95. Campbell C, Horlin C, Reid C, McMichael J, Forrest L, Brydges C, et al. How do you think she feels? Vulnerability in empathy and the role of attention in school-aged children born extremely preterm. Br J Dev Psychol. 2015;33(3):312–23.

    Article  PubMed  Google Scholar 

  96. Meldrum SJ, et al. Autism spectrum disorder in children born preterm-role of exposure to perinatal inflammation. Front Neurosci. 2013;7:123.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Joseph RM, Korzeniewski SJ, Allred EN, O’Shea TM, Heeren T, Frazier JA, et al. Extremely low gestational age and very low birthweight for gestational age are risk factors for autism spectrum disorder in a large cohort study of 10-year-old children born at 23-27 weeks’ gestation. Am J Obstet Gynecol. 2017;216(3):304.e1–304.e16.

    Article  Google Scholar 

  98. Kuzniewicz MW, Wi S, Qian Y, Walsh EM, Armstrong MA, Croen LA. Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. J Pediatr. 2014;164(1):20–5.

    Article  PubMed  Google Scholar 

  99. • Joseph RM, O’Shea TM, Allred EN, Heeren T, Hirtz D, Paneth N, et al. Prevalence and associated features of autism spectrum disorder in extremely low gestational age newborns at age 10 years. Autism Res. 2017;10(2):224–32. This large cohort study of nearly 1000 preterm children used ADOS for autism diagnosis.

    Article  PubMed  Google Scholar 

  100. Movsas TZ, Paneth N. The effect of gestational age on symptom severity in children with autism spectrum disorder. J Autism Dev Disord. 2012;42(11):2431–9.

    Article  PubMed  Google Scholar 

  101. Schieve LA, Baio J, Rice CE, Durkin M, Kirby RS, Drews-Botsch C, et al. Risk for cognitive deficit in a population-based sample of U.S. children with autism spectrum disorders: variation by perinatal health factors. Disabil Health J. 2010;3(3):202–12.

    Article  PubMed  Google Scholar 

  102. Meyer U, Feldon J, Dammann O. Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res. 2011;69(5 Pt 2):26R–33R.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dalman C, Allebeck P, Cullberg J, Grunewald C, Köster M. Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Arch Gen Psychiatry. 1999;56(3):234–40.

    Article  PubMed  CAS  Google Scholar 

  104. Jaekel J, Baumann N, Bartmann P, Wolke D. Mood and anxiety disorders in very preterm/very low-birth weight individuals from 6 to 26 years. J Child Psychol Psychiatry. 2018;59(1):88–95.

    Article  PubMed  Google Scholar 

  105. • Lloyd RO, et al. Electrographic seizures during the early postnatal period in preterm infants. J Pediatr. 2017;187:18–25.e2. Preterm infants were consequitively enrolled in this study for continuous EEG recording and seizure identification.

    Article  PubMed  Google Scholar 

  106. Vesoulis ZA, Inder TE, Woodward LJ, Buse B, Vavasseur C, Mathur AM. Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatr Res. 2014;75(4):564–9.

    Article  PubMed  Google Scholar 

  107. World Health Organization, Epilepsy Fact Sheet. 2018. http://www.who.int/news-room/factsheets/detail/epilepsy Accessed 2018 May 29.

  108. Tu YF, Wang LW, Wang ST, Yeh TF, Huang CC. Postnatal steroids and febrile seizure susceptibility in preterm children. Pediatrics. 2016;137(4):e20153404.

    Article  PubMed  Google Scholar 

  109. • Radic JA, Vincer M, McNeely PD. Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J Neurosurg Pediatr. 2015;15(6):580–8. This is a large population-based study of approximately 400 preterm infants with IVH.

  110. •• Chevallier M, et al. Leading causes of preterm delivery as risk factors for intraventricular hemorrhage in very preterm infants: results of the EPIPAGE 2 cohort study. Am J Obstet Gynecol. 2017;216(5):518.e1–518.e12. This large multicenter population-based study in France provided multiple important observations.

    Article  Google Scholar 

  111. Gamaleldin I, Harding D, Siassakos D, Draycott T, Odd D. Significant intraventricular hemorrhage is more likely in very preterm infants born by vaginal delivery: a multi-centre retrospective cohort study. J Matern Fetal Neonatal Med. 2017:1–6.

  112. Stangenes KM, Fevang SK, Grundt J, Donkor HM, Markestad T, Hysing M, et al. Children born extremely preterm had different sleeping habits at 11 years of age and more childhood sleep problems than term-born children. Acta Paediatr. 2017;106(12):1966–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margie A. Ream.

Ethics declarations

Conflict of Interest

Margie A. Ream and Lenora Lehwald declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurology of Systemic Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ream, M.A., Lehwald, L. Neurologic Consequences of Preterm Birth. Curr Neurol Neurosci Rep 18, 48 (2018). https://doi.org/10.1007/s11910-018-0862-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0862-2

Keywords

Navigation