Skip to main content

Advertisement

Log in

Tuberculous Meningitis in Children and Adults: New Insights for an Ancient Foe

  • Infection (J Halperin, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Tuberculous meningitis is the most devastating manifestation of infection with Mycobacterium tuberculosis and represents a medical emergency. Approximately one half of tuberculous meningitis patients die or suffer severe neurologic disability. The goal of this review will be to review the pathogenic, clinical, and radiologic features of tuberculous meningitis and to highlight recent advancements in translational and clinical science.

Recent Findings

Pharmacologic therapy includes combination anti-tuberculosis drug regimens and adjunctive corticosteroids. It is becoming clear that a successful treatment outcome depends on an immune response that is neither too weak nor overly robust, and genetic determinants of this immune response may identify which patients will benefit from adjunctive corticosteroids. Recent clinical trials of intensified anti-tuberculosis treatment regimens conducted in Indonesia and Vietnam, motivated by the pharmacologic challenges of treating M. tuberculosis infections of the central nervous system, have yielded conflicting results regarding the survival benefit of intensified treatment regimens. More consistent findings have been observed regarding the relationship between initial anti-tuberculosis drug resistance and mortality among tuberculous meningitis patients.

Summary

Prompt initiation of anti-tuberculosis treatment for all suspected cases remains a key aspect of management. Priorities for research include the improvement of diagnostic testing strategies and the optimization of host-directed and anti-tuberculosis therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ramdani H, Hajjioui A, Fourtassi M. Brain lesions in Ibn Sina’s “Canon of Medicine”: ancient theories and current medical concepts. J Med Surg Res. 2014;1(2):73–6.

    Google Scholar 

  2. Eadie MJ. A pathology of the animal spirits—the clinical neurology of Thomas Willis (1621-1675). Part II—disorders of intrinsically abnormal animal spirits. J Clin Neurosci. 2003;10(2):146–57.

    Article  CAS  PubMed  Google Scholar 

  3. Whytt R. Observations on the dropsy in the brain. In: The Works of Robert Whytt. 1768.

  4. Rich AR, McCordock HA. Pathogenesis of tubercular meningitis. Bull Johns Hopkins Hosp. 1933;52:5–13.

    Google Scholar 

  5. STREPTOMYCIN treatment of tuberculous meningitis. Lancet. 1948; 1(6503): 582–96.

  6. Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946-1986, with relevant subsequent publications. Int J Tuberc Lung Dis. 1999;3(10 Suppl 2):S231–79.

    CAS  PubMed  Google Scholar 

  7. Organization, W.H. Global tuberculosis report. 2016.

  8. Britz E, et al. The epidemiology of meningitis among adults in a South African Province with a high HIV prevalence, 2009-2012. PLoS One. 2016;11(9):e0163036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bergemann A, Karstaedt AS. The spectrum of meningitis in a population with high prevalence of HIV disease. QJM. 1996;89(7):499–504.

    Article  CAS  PubMed  Google Scholar 

  10. Thwaites GE, van Toorn R, Schoeman J. Tuberculous meningitis: more questions, still too few answers. Lancet Neurol. 2013;12(10):999–1010.

    Article  CAS  PubMed  Google Scholar 

  11. Rock RB, et al. Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin Microbiol Rev. 2008;21(2):243–61. table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MacGregor G. Tuberculosis of the central nervous system, with special reference to tuberculous meningitis. J Pathol Bacteriol. 1937;45:613–45.

    Article  Google Scholar 

  13. Thuong NT, et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 2007;8(5):422–8.

    Article  CAS  PubMed  Google Scholar 

  14. Thwaites GE, et al. Isoniazid resistance, mycobacterial genotype and outcome in Vietnamese adults with tuberculous meningitis. Int J Tuberc Lung Dis. 2002;6(10):865–71.

    CAS  PubMed  Google Scholar 

  15. Leonard JM. Central nervous system tuberculosis. Microbiol Spectr. 2017;5(2).

  16. Sharma SK, Mohan A, Sharma A. Challenges in the diagnosis & treatment of miliary tuberculosis. Indian J Med Res. 2012;135(5):703–30.

    PubMed  PubMed Central  Google Scholar 

  17. Donald PR, Schaaf HS, Schoeman JF. Tuberculous meningitis and miliary tuberculosis: the rich focus revisited. J Inf Secur. 2005;50(3):193–5.

    CAS  Google Scholar 

  18. Misra UK, Kalita J, Maurya PK. Stroke in tuberculous meningitis. J Neurol Sci. 2011;303(1–2):22–30.

    Article  PubMed  Google Scholar 

  19. Chan KH, et al. Cerebral infarcts complicating tuberculous meningitis. Cerebrovasc Dis. 2005;19(6):391–5.

    Article  CAS  PubMed  Google Scholar 

  20. Tsenova L, et al. Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc Natl Acad Sci U S A. 1999;96(10):5657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rajshekhar V. Management of hydrocephalus in patients with tuberculous meningitis. Neurol India. 2009;57(4):368–74.

    Article  PubMed  Google Scholar 

  22. Vinnard C, et al. Isoniazid resistance and death in patients with tuberculous meningitis: retrospective cohort study. BMJ. 2010;341:c4451.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kent SJ, et al. Tuberculous meningitis: a 30-year review. Clin Infect Dis. 1993;17(6):987–94.

    Article  CAS  PubMed  Google Scholar 

  24. Kennedy DH, Fallon RJ. Tuberculous meningitis. JAMA. 1979;241(3):264–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sharma P, et al. Incidence, predictors and prognostic value of cranial nerve involvement in patients with tuberculous meningitis: a retrospective evaluation. Eur J Intern Med. 2011;22(3):289–95.

    Article  PubMed  Google Scholar 

  26. Raut T, et al. Hydrocephalus in tuberculous meningitis: incidence, its predictive factors and impact on the prognosis. J Inf Secur. 2013;66(4):330–7.

    Google Scholar 

  27. Thwaites GE, et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med. 2004;351(17):1741–51.

    Article  CAS  PubMed  Google Scholar 

  28. Chiang SS, et al. Treatment outcomes of childhood tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(10):947–57.

    Article  PubMed  Google Scholar 

  29. Verdon R, et al. Tuberculous meningitis in adults: review of 48 cases. Clin Infect Dis. 1996;22(6):982–8.

    Article  CAS  PubMed  Google Scholar 

  30. Delage G, Dusseault M. Tuberculous meningitis in children: a retrospective study of 79 patients, with an analysis of prognostic factors. Can Med Assoc J. 1979;120(3):305–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thwaites GE, et al. Diagnosis of adult tuberculous meningitis by use of clinical and laboratory features. Lancet. 2002;360(9342):1287–92.

    Article  CAS  PubMed  Google Scholar 

  32. Solari L, et al. The validity of cerebrospinal fluid parameters for the diagnosis of tuberculous meningitis. Int J Infect Dis. 2013;17(12):e1111–5.

    Article  CAS  PubMed  Google Scholar 

  33. Youssef FG, et al. Differentiation of tuberculous meningitis from acute bacterial meningitis using simple clinical and laboratory parameters. Diagn Microbiol Infect Dis. 2006;55(4):275–8.

    Article  CAS  PubMed  Google Scholar 

  34. Vidal JE, et al. Is it possible to differentiate tuberculous and cryptococcal meningitis in HIV-infected patients using only clinical and basic cerebrospinal fluid characteristics? S Afr Med J. 2017;107(2):156–9.

    Article  CAS  PubMed  Google Scholar 

  35. Checkley AM, et al. Sensitivity and specificity of an index for the diagnosis of TB meningitis in patients in an urban teaching hospital in Malawi. Tropical Med Int Health. 2008;13(8):1042–6.

    Article  Google Scholar 

  36. Saavedra JS, et al. Validation of Thwaites Index for diagnosing tuberculous meningitis in a Colombian population. J Neurol Sci. 2016;370:112–8.

    Article  PubMed  Google Scholar 

  37. Torok ME, et al. Validation of a diagnostic algorithm for adult tuberculous meningitis. Am J Trop Med Hyg. 2007;77(3):555–9.

    PubMed  Google Scholar 

  38. Kurien R, et al. Tuberculous meningitis: a comparison of scoring systems for diagnosis. Oman Med J. 2013;28(3):163–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sunbul M, et al. Thwaites’ diagnostic scoring and the prediction of tuberculous meningitis. Med Princ Pract. 2005;14(3):151–4.

    Article  PubMed  Google Scholar 

  40. Bomanji JB, et al. Imaging in tuberculosis. Cold Spring Harb Perspect Med. 2015:5(6).

  41. Garg RK, Malhotra HS, Jain A. Neuroimaging in tuberculous meningitis. Neurol India. 2016;64(2):219–27.

    Article  PubMed  Google Scholar 

  42. Rohlwink UK, et al. Imaging features of the brain, cerebral vessels and spine in pediatric tuberculous meningitis with associated hydrocephalus. Pediatr Infect Dis J. 2016;35(10):e301–10.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Uysal G, et al. Magnetic resonance imaging in diagnosis of childhood central nervous system tuberculosis. Infection. 2001;29(3):148–53.

    Article  CAS  PubMed  Google Scholar 

  44. Andronikou S, et al. Definitive neuroradiological diagnostic features of tuberculous meningitis in children. Pediatr Radiol. 2004;34(11):876–85.

    Article  PubMed  Google Scholar 

  45. Ozates M, et al. CT of the brain in tuberculous meningitis. A review of 289 patients. Acta Radiol. 2000;41(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  46. Burrill J, et al. Tuberculosis: a radiologic review. Radiographics. 2007;27(5):1255–73.

    Article  PubMed  Google Scholar 

  47. Lu TT, et al. Magnetic resonance angiography manifestations and prognostic significance in HIV-negative tuberculosis meningitis. Int J Tuberc Lung Dis. 2015;19(12):1448–54.

    Article  PubMed  Google Scholar 

  48. Kalita J, et al. MR angiography in tuberculous meningitis. Acta Radiol. 2012;53(3):324–9.

    Article  PubMed  Google Scholar 

  49. Sanei Taheri M, et al. Central nervous system tuberculosis: an imaging-focused review of a reemerging disease. Radiol Res Pract. 2015;2015:202806.

    PubMed  PubMed Central  Google Scholar 

  50. Kasundra GM, et al. Distal cord-predominant longitudinally extensive myelitis with diffuse spinal meningitis and dural abscesses due to occult tuberculosis: a rare occurrence. J Pediatr Neurosci. 2016;11(1):77–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thwaites GE, Chau TT, Farrar JJ. Improving the bacteriological diagnosis of tuberculous meningitis. J Clin Microbiol. 2004;42(1):378–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen P, et al. A highly efficient Ziehl-Neelsen stain: identifying de novo intracellular Mycobacterium tuberculosis and improving detection of extracellular M. tuberculosis in cerebrospinal fluid. J Clin Microbiol. 2012;50(4):1166–70.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nhu NT, et al. Evaluation of GeneXpert MTB/RIF for diagnosis of tuberculous meningitis. J Clin Microbiol. 2014;52(1):226–33.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bahr NC, et al. Improved diagnostic sensitivity for tuberculous meningitis with Xpert((R)) MTB/RIF of centrifuged CSF. Int J Tuberc Lung Dis. 2015;19(10):1209–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mai NT, Thwaites GE. Recent advances in the diagnosis and management of tuberculous meningitis. Curr Opin Infect Dis. 2017;30(1):123–8.

    CAS  PubMed  Google Scholar 

  56. Nahid P, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):e147–95.

    Article  PubMed  Google Scholar 

  57. Donald PR, et al. Cerebrospinal fluid isoniazid concentrations in children with tuberculous meningitis: the influence of dosage and acetylation status. Pediatrics. 1992;89(2):247–50.

    CAS  PubMed  Google Scholar 

  58. Ellard GA, Humphries MJ, Allen BW. Cerebrospinal fluid drug concentrations and the treatment of tuberculous meningitis. Am Rev Respir Dis. 1993;148(3):650–5.

    Article  CAS  PubMed  Google Scholar 

  59. Donald PR. The chemotherapy of tuberculous meningitis in children and adults. Tuberculosis (Edinb). 2010;90(6):375–92.

    Article  CAS  Google Scholar 

  60. Pilheu JA, et al. Concentrations of ethambutol in the cerebrospinal fluid after oral administration. Tubercle. 1971;52(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  61. Gundert-Remy U, Klett M, Weber E. Concentration of ethambutol in cerebrospinal fluid in man as a function of the non-protein-bound drug fraction in serum. Eur J Clin Pharmacol. 1973;6(2):133–6.

    Article  CAS  PubMed  Google Scholar 

  62. Sun H, et al. Drug efflux transporters in the CNS. Adv Drug Deliv Rev. 2003;55(1):83–105.

    Article  CAS  PubMed  Google Scholar 

  63. Mindermann T, Zimmerli W, Gratzl O. Rifampin concentrations in various compartments of the human brain: a novel method for determining drug levels in the cerebral extracellular space. Antimicrob Agents Chemother. 1998;42(10):2626–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. D’Oliveira JJ. Cerebrospinal fluid concentrations of rifampin in meningeal tuberculosis. Am Rev Respir Dis. 1972;106(3):432–7.

    Article  PubMed  Google Scholar 

  65. Boeree MJ, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191(9):1058–65.

    Article  CAS  PubMed  Google Scholar 

  66. Pea F, et al. Levofloxacin disposition in cerebrospinal fluid in patients with external ventriculostomy. Antimicrob Agents Chemother. 2003;47(10):3104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thwaites GE, et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55(7):3244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. • Ruslami R, et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis. 2013;13(1):27–35. This study reports the results of a randomized, non-blinded, clinical trial of high-dose intravenous rifampin and levofloxacin, in combination with the other first-line anti-tuberculosis drugs, for the intensified treatment of tuberculosis meningitis in Indonesia, reporting a significant survival benefit in the intensified treatment arm.

    Article  PubMed  Google Scholar 

  69. Te Brake L, et al. Pharmacokinetic/pharmacodynamic analysis of an intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis. Int J Antimicrob Agents. 2015;45(5):496–503.

    Article  CAS  Google Scholar 

  70. • Heemskerk AD, et al. Intensified antituberculosis therapy in adults with tuberculous meningitis. N Engl J Med. 2016;374(2):124–34. This study reports the results of a randomized, blinded, clinical trial of high-dose rifampin and levofloxacin, in combination with the other first-line anti-tuberculosis drugs, for the intensified treatment of tuberculosis meningitis in Vietnam, with no overall survival benefit observed for the intensified treatment arm.

    Article  CAS  PubMed  Google Scholar 

  71. Torok ME, et al. Dexamethasone and long-term outcome of tuberculous meningitis in Vietnamese adults and adolescents. PLoS One. 2011;6(12):e27821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tobin DM, et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell. 2010;140(5):717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tobin DM, et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell. 2012;148(3):434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thuong NTT, et al. Leukotriene A4 hydrolase genotype and HIV infection influence intracerebral inflammation and survival from tuberculous meningitis. J Infect Dis. 2017;215(7):1020–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. van Laarhoven A, et al. Clinical parameters, routine inflammatory markers, and LTA4H genotype as predictors of mortality among 608 patients with tuberculous meningitis in Indonesia. J Infect Dis. 2017;215(7):1029–39.

    Article  PubMed  Google Scholar 

  76. Schoeman JF, et al. The role of aspirin in childhood tuberculous meningitis. J Child Neurol. 2011;26(8):956–62.

    Article  PubMed  Google Scholar 

  77. Misra UK, Kalita J, Nair PP. Role of aspirin in tuberculous meningitis: a randomized open label placebo controlled trial. J Neurol Sci. 2010;293(1–2):12–7.

    Article  CAS  PubMed  Google Scholar 

  78. van Toorn R, Solomons R. Update on the diagnosis and management of tuberculous meningitis in children. Semin Pediatr Neurol. 2014;21(1):12–8.

    Article  PubMed  Google Scholar 

  79. van Well GT, et al. Twenty years of pediatric tuberculous meningitis: a retrospective cohort study in the western cape of South Africa. Pediatrics. 2009;123(1):e1–8.

    Article  PubMed  Google Scholar 

  80. Miftode EG, et al. Tuberculous meningitis in children and adults: a 10-year retrospective comparative analysis. PLoS One. 2015;10(7):e0133477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Amitava AK, Alarm S, Hussain R. Neuro-ophthalmic features in pediatric tubercular meningoencephalitis. J Pediatr Ophthalmol Strabismus. 2001;38(4):229–34.

    CAS  PubMed  Google Scholar 

  82. Garg RK, et al. Vision loss in tuberculous meningitis. J Neurol Sci. 2017;375:27–34.

    Article  PubMed  Google Scholar 

  83. Vinnard C, Blumberg EA. Endocrine and metabolic aspects of tuberculosis. Microbiol Spectr. 2017:5(1).

  84. Vadivelu S, et al. A review of the neurological and neurosurgical implications of tuberculosis in children. Clin Pediatr (Phila). 2013;52(12):1135–43.

    Article  Google Scholar 

  85. Organization, W.H. Guidance for national tuberculosis programmes on the management of tuberculosis in children. 2014.

  86. Thee S, et al. Pharmacokinetics of isoniazid, rifampin, and pyrazinamide in children younger than two years of age with tuberculosis: evidence for implementation of revised World Health Organization recommendations. Antimicrob Agents Chemother. 2011;55(12):5560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Donald PR, Maritz JS, Diacon AH. The pharmacokinetics and pharmacodynamics of rifampicin in adults and children in relation to the dosage recommended for children. Tuberculosis (Edinb). 2011;91(3):196–207.

    Article  CAS  Google Scholar 

  88. McIlleron H, et al. Isoniazid plasma concentrations in a cohort of South African children with tuberculosis: implications for international pediatric dosing guidelines. Clin Infect Dis. 2009;48(11):1547–53.

    Article  CAS  PubMed  Google Scholar 

  89. Pouplin T, et al. Naive-pooled pharmacokinetic analysis of pyrazinamide, isoniazid and rifampicin in plasma and cerebrospinal fluid of Vietnamese children with tuberculous meningitis. BMC Infect Dis. 2016;16:144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Donald PR. Chemotherapy for tuberculous meningitis. N Engl J Med. 2016;374(2):179–81.

    Article  PubMed  Google Scholar 

  91. Corbett EL, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163(9):1009–21.

    Article  PubMed  Google Scholar 

  92. De Cock KM, et al. Tuberculosis and HIV infection in sub-Saharan Africa. JAMA. 1992;268(12):1581–7.

    Article  PubMed  Google Scholar 

  93. Berenguer J, et al. Tuberculous meningitis in patients infected with the human immunodeficiency virus. N Engl J Med. 1992;326(10):668–72.

    Article  CAS  PubMed  Google Scholar 

  94. Yechoor VK, et al. Tuberculous meningitis among adults with and without HIV infection. Experience in an urban public hospital. Arch Intern Med. 1996;156(15):1710–6.

    Article  CAS  PubMed  Google Scholar 

  95. Katrak SM, et al. The clinical, radiological and pathological profile of tuberculous meningitis in patients with and without human immunodeficiency virus infection. J Neurol Sci. 2000;181(1–2):118–26.

    Article  CAS  PubMed  Google Scholar 

  96. Schutte CM. Clinical, cerebrospinal fluid and pathological findings and outcomes in HIV-positive and HIV-negative patients with tuberculous meningitis. Infection. 2001;29(4):213–7.

    Article  CAS  PubMed  Google Scholar 

  97. Karstaedt AS, et al. Tuberculous meningitis in South African urban adults. QJM. 1998;91(11):743–7.

    Article  CAS  PubMed  Google Scholar 

  98. Dube MP, Holtom PD, Larsen RA. Tuberculous meningitis in patients with and without human immunodeficiency virus infection. Am J Med. 1992;93(5):520–4.

    Article  CAS  PubMed  Google Scholar 

  99. Karande S, et al. Tuberculous meningitis and HIV. Indian J Pediatr. 2005;72(9):755–60.

    Article  PubMed  Google Scholar 

  100. van der Weert EM, et al. Comparison of diagnostic criteria of tuberculous meningitis in human immunodeficiency virus-infected and uninfected children. Pediatr Infect Dis J. 2006;25(1):65–9.

    Article  PubMed  Google Scholar 

  101. El Sahly HM, et al. Mortality associated with central nervous system tuberculosis. J Inf Secur. 2007;55(6):502–9.

    Google Scholar 

  102. Bossi P, et al. Tuberculous meningitis: clinical, biological and x-ray computed tomographic comparison between patients with or without HIV infection. Presse Med. 1997;26(18):844–7.

    CAS  PubMed  Google Scholar 

  103. Thwaites GE, et al. The influence of HIV infection on clinical presentation, response to treatment, and outcome in adults with tuberculous meningitis. J Infect Dis. 2005;192(12):2134–41.

    Article  PubMed  Google Scholar 

  104. Havlir DV, et al. Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med. 2011;365(16):1482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abdool Karim SS, et al. Integration of antiretroviral therapy with tuberculosis treatment. N Engl J Med. 2011;365(16):1492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Torok ME, et al. Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)—associated tuberculous meningitis. Clin Infect Dis. 2011;52(11):1374–83.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Boulware DR, et al. Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med. 2014;370(26):2487–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lawn SD, Meintjes G. Pathogenesis and prevention of immune reconstitution disease during antiretroviral therapy. Expert Rev Anti-Infect Ther. 2011;9(4):415–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Peloquin C. The role of therapeutic drug monitoring in mycobacterial infections. Microbiol Spectr. 2017;5(1).

  110. Ramachandran G, Swaminathan S. Safety and tolerability profile of second-line anti-tuberculosis medications. Drug Saf. 2015;38(3):253–69.

    Article  CAS  PubMed  Google Scholar 

  111. Stagg HR, et al. Isoniazid-resistant tuberculosis: a cause for concern? Int J Tuberc Lung Dis. 2017;21(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  112. Tho DQ, et al. Influence of antituberculosis drug resistance and Mycobacterium tuberculosis lineage on outcome in HIV-associated tuberculous meningitis. Antimicrob Agents Chemother. 2012;56(6):3074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. • Vinnard C, et al. Long-term mortality of patients with tuberculous meningitis in New York City: a cohort study. Clin Infect Dis. 2017;64(4):401–7. This study examined 10-year survival of tuberculo us meningitis patients in New York City, with a focus on the role of initial drug resistance. The impact of isoniazid resistance on mortality was not apparent until after the first 60 days of treatment.

    PubMed  Google Scholar 

  114. • Heemskerk AD, et al. Clinical outcomes of patients with drug-resistant tuberculous meningitis treated with an intensified antituberculosis regimen. Clin Infect Dis. 2017. This study was a subanalysis of patients in the Vietnamese intensified treatment trial, demonstrating a survival benefit of intensified treatment in the subset of patients with initial isoniazid resistance.

  115. Vinnard C, et al. Isoniazid-resistant tuberculous meningitis, United States, 1993-2005. Emerg Infect Dis. 2011;17(3):539–42.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vinnard C, et al. Multidrug resistant tuberculous meningitis in the United States, 1993-2005. J Inf Secur. 2011;63(3):240–2.

    Google Scholar 

  117. Sullivan RP, et al. Successful treatment of multiple multidrug resistant intracranial tuberculomata. Case Rep Infect Dis. 2016;2016:1841529.

    PubMed  PubMed Central  Google Scholar 

  118. Berning SE, Cherry TA, Iseman MD. Novel treatment of meningitis caused by multidrug-resistant Mycobacterium tuberculosis with intrathecal levofloxacin and amikacin: case report. Clin Infect Dis. 2001;32(4):643–6.

    Article  CAS  PubMed  Google Scholar 

  119. Li H, et al. Linezolid is associated with improved early outcomes of childhood tuberculous meningitis. Pediatr Infect Dis J. 2016;35(6):607–10.

    Article  PubMed  Google Scholar 

  120. Sun F, et al. Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother. 2014;58(10):6297–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Merkler AE, et al. Neurological complications after tuberculous meningitis in a multi-state cohort in the United States. J Neurol Sci. 2017;375:460–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Vinnard.

Ethics declarations

Conflict of Interest

Alyssa Mezochow, Kiran Thakur, and Christopher Vinnard declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Infection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezochow, A., Thakur, K. & Vinnard, C. Tuberculous Meningitis in Children and Adults: New Insights for an Ancient Foe. Curr Neurol Neurosci Rep 17, 85 (2017). https://doi.org/10.1007/s11910-017-0796-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0796-0

Keywords

Navigation