Skip to main content

Advertisement

Log in

Brain Imaging in Acute Ischemic Stroke—MRI or CT?

  • Stroke (HP Adams, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

In acute stroke, imaging provides different technologies to demonstrate stroke subtype, tissue perfusion and vessel patency. In this review, we highlight recent clinical studies that are likely to guide therapeutic decisions. Clot length in computed tomography (CT) and clot burden in MR, imaging of leptomeningeal collaterals and indicators for active bleeding are illustrated. Imaging-based concepts for treatment of stroke at awakening and pre-hospital treatment in specialized ambulances offer new potentials to improve patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995;333:1581–1587.

  2. Kaste M. Reborn workhorse, CT, pulls the wagon toward thrombolysis beyond 3 hours. Stroke. 2004;35:357–9.

    Article  PubMed  Google Scholar 

  3. Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42:1775–7.

    Article  PubMed  Google Scholar 

  4. Mocco JK, P; Zeidat, O. Assess the Penumbra System in the treatment of acute stroke (THERAPY). 2010.

  5. Frei D, Heck D, Yoo A, et al. O-006 analysis of screened patients from the Penumbra THERAPY Trial: correlations of clot length assessed by thin-section CT in a sequential series of acute stroke patients. J Neurointerventional Surg. 2014;6 Suppl 1:A3–4.

    Article  Google Scholar 

  6. Mortimer AM, Little DH, Minhas KS, Walton ER, Renowden SA, Bradley MD. Thrombus length estimation in acute ischemic stroke: a potential role for delayed contrast enhanced CT. J Neurointerventional Surg. 2014;6:244–8.

    Article  Google Scholar 

  7. Shobha N, Bal S, Boyko M, et al. Measurement of length of hyperdense MCA sign in acute ischemic stroke predicts disappearance after IV tPA. J Neuroimaging. 2014;24:7–10.

    Article  PubMed  Google Scholar 

  8. Puetz V, Dzialowski I, Hill MD, et al. Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score. Int J Stroke. 2008;3:230–6.

    Article  PubMed  Google Scholar 

  9. Legrand L, Naggara O, Turc G, et al. Clot burden score on admission T2*-MRI predicts recanalization in acute stroke. Stroke. 2013;44:1878–84.

    Article  CAS  PubMed  Google Scholar 

  10. Weisstanner C, Gratz PP, Schroth G, et al. Thrombus imaging in acute stroke: correlation of thrombus length on susceptibility-weighted imaging with endovascular reperfusion success. Eur Radiol. 2014;24:1735–41.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kucinski T, Koch C, Eckert B, et al. Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology. 2003;45:11–8.

    CAS  PubMed  Google Scholar 

  12. Liebeskind DS, Jahan R, Nogueira RG, Zaidat OO, Saver JL. Impact of collaterals on successful revascularization in Solitaire FR with the intention for thrombectomy. Stroke. 2014;45:2036–40.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Liebeskind DS, Tomsick TA, Foster LD, et al. Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke. 2014;45:759–64. Liebeskind demonstrated with angiographic data that collateral grade was strongly related to both recanalization of the occluded arterial segment and downstream reperfusion. Impact of collateral flow on clinical outcome may depend on the degree of reperfusion.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nambiar V, Sohn SI, Almekhlafi MA, et al. CTA collateral status and response to recanalization in patients with acute ischemic stroke. AJNR Am J Neuroradiol. 2014;35:884–90.

    Article  CAS  PubMed  Google Scholar 

  15. Kharitonova TV, Melo TP, Andersen G, Egido JA, Castillo J, Wahlgren N. Importance of cerebral artery recanalization in patients with stroke with and without neurological improvement after intravenous thrombolysis. Stroke. 2013;44:2513–8.

    Article  PubMed  Google Scholar 

  16. Albers GW, Goldstein LB, Hess DC, et al. Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke. 2011;42:2645–50.

    Article  PubMed  Google Scholar 

  17. Bang OY, Saver JL, Kim SJ, et al. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke. 2011;42:693–9.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nicoli F, Lafaye de Micheaux P, Girard N. Perfusion-weighted imaging-derived collateral flow index is a predictor of MCA M1 recanalization after i.v. thrombolysis. Am J Neuroradiol. 2013;34:107–14.

    Article  CAS  PubMed  Google Scholar 

  19. Calleja AI, Cortijo E, Garcia-Bermejo P, et al. Collateral circulation on perfusion-computed tomography-source images predicts the response to stroke intravenous thrombolysis. Eur J Neurol. 2013;20:795–802.

    Article  CAS  PubMed  Google Scholar 

  20. Ribo M, Flores A, Rubiera M, et al. Extending the time window for endovascular procedures according to collateral pial circulation. Stroke. 2011;42:3465–9.

    Article  PubMed  Google Scholar 

  21. Hohenhaus M, Schmidt WU, Brunecker P, et al. FLAIR vascular hyperintensities in acute ICA and MCA infarction: a marker for mismatch and stroke severity? Cerebrovasc Dis. 2012;34:63–9.

    Article  CAS  PubMed  Google Scholar 

  22. Excellence NIfHaC. Diagnosis and initial management of acute stroke and transient ischaemic attack (TIA). 2008. http://www.nice.org.uk/guidance/cg68/resources/guidance-strokepdf

  23. Biesbroek JM, Niesten JM, Dankbaar JW, et al. Diagnostic accuracy of CT perfusion imaging for detecting acute ischemic stroke: a systematic review and meta-analysis. Cerebrovasc Dis. 2013;35:493–501. Pooling data from 15 studies (1107 patients) demonstrates that CTP has a sensitivity of 80% and a specificity of 95% for detecting infarcts.

    Article  CAS  PubMed  Google Scholar 

  24. Campbell BC, Weir L, Desmond PM, et al. CT perfusion improves diagnostic accuracy and confidence in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2013;84:613–8.

    Article  PubMed  Google Scholar 

  25. Kloska SP, Nabavi DG, Gaus C, et al. Acute stroke assessment with CT: do we need multimodal evaluation? Radiology. 2004;233:79–86.

    Article  PubMed  Google Scholar 

  26. Huisa BN, Neil WP, Schrader R, et al. Clinical use of computed tomographic perfusion for the diagnosis and prediction of lesion growth in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23:114–22.

    Article  PubMed  Google Scholar 

  27. Saur D, Kucinski T, Grzyska U, et al. Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR American journal of neuroradiology. 2003;24:878–85.

    PubMed  Google Scholar 

  28. Fiebach JB, Schellinger PD, Jansen O, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke. 2002;33:2206–10.

    Article  CAS  PubMed  Google Scholar 

  29. Sylaja PN, Coutts SB, Krol A, Hill MD, Demchuk AM. When to expect negative diffusion-weighted images in stroke and transient ischemic attack. Stroke. 2008;39:1898–900.

    Article  CAS  PubMed  Google Scholar 

  30. Hotter B, Kufner A, Malzahn U, Hohenhaus M, Jungehulsing GJ, Fiebach JB. Validity of negative high-resolution diffusion-weighted imaging in transient acute cerebrovascular events. Stroke. 2013;44:2598–600.

    Article  PubMed  Google Scholar 

  31. Fink JN, Kumar S, Horkan C, et al. The stroke patient who woke up: clinical and radiological features, including diffusion and perfusion MRI. Stroke. 2002;33:988–93.

    Article  PubMed  Google Scholar 

  32. Mackey J, Kleindorfer D, Sucharew H, et al. Population-based study of wake-up strokes. Neurology. 2011;76:1662–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Moradiya Y, Janjua N. Presentation and outcomes of “wake-up strokes” in a large randomized stroke trial: analysis of data from the International Stroke Trial. J Stroke Cerebrovasc Dis. 2013;22:e286–92.

    Article  PubMed  Google Scholar 

  34. Rimmele DL, Thomalla G. Wake-up stroke: clinical characteristics, imaging findings, and treatment option—an update. Front Neurol. 2014;5:35.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Thomalla G, Cheng B, Ebinger M, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10:978–86. In 543 patients, signal intensity on FLAIR was assessed in DWI lesions. Patients with an acute ischaemic lesion detected with DWI but negative FLAIR imaging are likely to be within a time window for which thrombolysis is safe and effective. These findings made the randomised Wake-UP trial possible.

    Article  PubMed  Google Scholar 

  36. Thomalla G, Rossbach P, Rosenkranz M, et al. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol. 2009;65:724–32.

    Article  PubMed  Google Scholar 

  37. Ebinger M, Galinovic I, Rozanski M, Brunecker P, Endres M, Fiebach JB. Fluid-attenuated inversion recovery evolution within 12 hours from stroke onset: a reliable tissue clock? Stroke. 2010;41:250–5.

    Article  PubMed  Google Scholar 

  38. Aoki J, Kimura K, Iguchi Y, Shibazaki K, Sakai K, Iwanaga T. FLAIR can estimate the onset time in acute ischemic stroke patients. J Neurol Sci. 2010;293:39–44.

    Article  PubMed  Google Scholar 

  39. Galinovic I, Puig J, Neeb L, et al. Visual and region of interest-based inter-rater agreement in the assessment of the diffusion-weighted imaging- fluid-attenuated inversion recovery mismatch. Stroke. 2014;45:1170–2.

    Article  PubMed  Google Scholar 

  40. Ebinger M, Scheitz JF, Kufner A, Endres M, Fiebach JB, Nolte CH. MRI-based intravenous thrombolysis in stroke patients with unknown time of symptom onset. Eur J Neurol. 2012;19:348–50.

    Article  CAS  PubMed  Google Scholar 

  41. Thomalla G, Fiebach JB, Ostergaard L, et al. A multicenter, randomized, double-blind, placebo-controlled trial to test efficacy and safety of magnetic resonance imaging-based thrombolysis in wake-up stroke (WAKE-UP). Int J Stroke. 2014;9:829–36. The WAKE-UP is an EU funded multicenter trial to study thrombolysis in patients with stroke at awakening.

    Article  PubMed  Google Scholar 

  42. Todo K, Moriwaki H, Saito K, Tanaka M, Oe H, Naritomi H. Early CT findings in unknown-onset and wake-up strokes. Cerebrovasc Dis. 2006;21:367–71.

    Article  PubMed  Google Scholar 

  43. Roveri L, La Gioia S, Ghidinelli C, Anzalone N, De Filippis C, Comi G. Wake-up stroke within 3 hours of symptom awareness: imaging and clinical features compared to standard recombinant tissue plasminogen activator treated stroke. J Stroke Cerebrovasc Dis. 2013;22:703–8.

    Article  PubMed  Google Scholar 

  44. Huisa BN, Raman R, Ernstrom K, et al. Alberta Stroke Program Early CT Score (ASPECTS) in patients with wake-up stroke. J Stroke Cerebrovasc Dis. 2010;19:475–9.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kucinski T, Vaterlein O, Glauche V, et al. Correlation of apparent diffusion coefficient and computed tomography density in acute ischemic stroke. Stroke. 2002;33:1786–91.

    Article  PubMed  Google Scholar 

  46. Yamaki T, Yoshino E, Higuchi T. Extravasation of contrast medium during both computed tomography and cerebral angiography. Surg Neurol. 1983;19:247–50.

    Article  CAS  PubMed  Google Scholar 

  47. Ederies A, Demchuk A, Chia T, et al. Postcontrast CT extravasation is associated with hematoma expansion in CTA spot negative patients. Stroke. 2009;40:1672–6.

    Article  PubMed  Google Scholar 

  48. Delgado Almandoz JE, Yoo AJ, Stone MJ, et al. The spot sign score in primary intracerebral hemorrhage identifies patients at highest risk of in-hospital mortality and poor outcome among survivors. Stroke. 2010;41:54–60.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Delgado Almandoz JE, Yoo AJ, Stone MJ, et al. Systematic characterization of the computed tomography angiography spot sign in primary intracerebral hemorrhage identifies patients at highest risk for hematoma expansion: the spot sign score. Stroke. 2009;40:2994–3000.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Demchuk AM, Dowlatshahi D, Rodriguez-Luna D, et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11:307–14. Analysing findings in 268 ICH patients Demchuk demonstrated the predictive value of spot sign. It should serve as an entry criterion for future trials of haemostatic therapy.

    Article  PubMed  Google Scholar 

  51. Selariu E, Zia E, Brizzi M, Abul-Kasim K. Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value. BMC Neurol. 2012;12:109.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kidwell CS, Chalela JA, Saver JL, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004;292:1823–30.

    Article  CAS  PubMed  Google Scholar 

  53. Fiebach JB, Schellinger PD, Gass A, et al. Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke. 2004;35:502–6.

    Article  PubMed  Google Scholar 

  54. Dannenberg S, Scheitz JF, Rozanski M, et al. Number of cerebral microbleeds and risk of intracerebral hemorrhage after intravenous thrombolysis. Stroke. 2014;45:2900–5.

    Article  PubMed  Google Scholar 

  55. Walter S, Kostpopoulos P, Haass A, et al. Bringing the hospital to the patient: first treatment of stroke patients at the emergency site. PLoS One. 2010;5:e13758.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Weber JE, Ebinger M, Rozanski M, et al. Prehospital thrombolysis in acute stroke Results of the PHANTOM-S pilot study. Neurology. 2013;80:163–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ebinger M, Lindenlaub S, Kunz A, et al. Prehospital thrombolysis: a manual from Berlin. J Vis Exp 2013:e50534.

  58. Walter S, Kostopoulos P, Haass A, et al. Diagnosis and treatment of patients with stroke in a mobile stroke unit versus in hospital: a randomised controlled trial. Lancet Neurol. 2012;11:397–404.

    Article  PubMed  Google Scholar 

  59. Ebinger M, Winter B, Wendt M, et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA. 2014;311:1622–31. Ebinger proved that ambulance-based thrombolysis resulted in decreased time to treatment without an increase in adverse events. This motivated many groups worldwide to implement a pre hospital thrombolysis service.

    Article  CAS  PubMed  Google Scholar 

  60. Kostopoulos P, Walter S, Haass A, et al. Mobile stroke unit for diagnosis-based triage of persons with suspected stroke. Neurology. 2012;78:1849–52.

    Article  CAS  PubMed  Google Scholar 

  61. Krebes S, Ebinger M, Baumann AM, et al. Development and validation of a dispatcher identification algorithm for stroke emergencies. Stroke. 2012;43:776–81.

    Article  PubMed  Google Scholar 

  62. Gierhake D, Weber JE, Villringer K, Ebinger M, Audebert HJ, Fiebach JB. Mobile CT: technical aspects of prehospital stroke imaging before intravenous thrombolysis. Röfo. 2013;185:55–9.

    CAS  PubMed  Google Scholar 

  63. Ebinger M, Rozanski M, Waldschmidt C, et al. PHANTOM-S: the prehospital acute neurological therapy and optimization of medical care in stroke patients - study. Int J Stroke. 2012;7:348–53.

    Article  PubMed  Google Scholar 

  64. Audebert HJ, Saver JL, Starkman S, Lees KR, Endres M. Prehospital stroke care: new prospects for treatment and clinical research. Neurology. 2013;81:501–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Heinrich J. Audebert has received consultancy fees from Lundbeck, Roche Diagnostics, Pfizer and Sanofi and honoraria payments from Pfizer, Lundbeck, BMS, Takeda, Boehringer Ingelheim and EVER Pharma.

Jochen B. Fiebach has received board membership payments from Lundbeck; consultancy fees from Lundbeck, Synarc, BioClinica and Perceptive; and payment for development of educational presentations from Boehringer Ingelheim.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich J. Audebert.

Additional information

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Audebert, H.J., Fiebach, J.B. Brain Imaging in Acute Ischemic Stroke—MRI or CT?. Curr Neurol Neurosci Rep 15, 6 (2015). https://doi.org/10.1007/s11910-015-0526-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0526-4

Keywords

Navigation