Skip to main content

Advertisement

Log in

Infectious Challenges with Novel Antibody–Based Therapies

  • Transplant and Oncology (M Ison, N Theodoropoulos and S Pergam, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The development of new antibody-based therapies has changed the landscape of the treatment of malignancies and improved post-transplant outcomes for transplant recipients. Use of these new therapies has led to recognition of unintended, potentially serious infectious complications. This review seeks to provide an overview of the infectious risks of these agents and assist clinicians in how to address them.

Recent Findings

Due to its profound depletion of B- and T-lymphocytes, alemtuzumab increases the risk of viral reactivation and other intracellular pathogens. Anti-CD20 agents increase the risk of hepatitis B virus reactivation and carry the risk of progressive multifocal leukoencephalopathy. Immune checkpoint inhibitors can cause immune-related adverse events that can masquerade as infections. Eculizumab increases the risk of Neisseria infections. Brentuximab vedotin appears to increase the overall risk of infection, though no specific prophylaxis strategies are recommended. Belatacept increases the risk of post-transplant lymphoproliferative disorders and Pneumocystis jirovecii pneumonia.

Summary

While improving outcomes and survival, novel therapies may have off-target effects, increasing the risk of bacterial, viral, and fungal infections. Clinicians must be aware of potential infectious complications and take measures to screen for latent infections, provide immunizations, and provide chemoprophylaxis (as indicated). Clinicians also need to be aware of potential non-infectious, inflammatory autoimmune complications of these agents that could present similarly to infection. Multi-disciplinary and multi-institutional research is needed to better define the association between these therapies and infection, and develop protocols to reduce infectious risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tau N, Shargian-Alon L, Reich S, Paul M, Gafter-Gvili A, Shepshelovich D, et al. Reporting infections in clinical trials of patients with haematological malignancies. Clin Microbiol Infect. 2019;25(12):1494–500.

    Article  CAS  PubMed  Google Scholar 

  2. Cordonnier C, Maschmeyer G, Cesaro S, Ljungman P. Reporting infectious complications in haematology clinical trials should be improved. Clin Microbiol Infect. 2019;25(12):1451–3.

    Article  CAS  PubMed  Google Scholar 

  3. •• Fernandez-Ruiz M, Meije Y, Manuel O, Akan H, Carratala J, Aguado JM, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the Safety of targeted and biological therapies: an infectious diseases perspective (Introduction). Clin Microbiol Infect. 2018. This is a comprehesive collection of review articles on the infectious complications of biologicals and small mocules targeted therapies used in cancer, transplantation, autoimmune disorder, and rheumatological diseases.

  4. • National comprehensive Cancer Network. Prevention and treatment of cancer-related infections version 2.2020 [Available from: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf. This is a continously updated online guidelines document on prevention and treatment of cancer-related infections.

  5. •• Maschmeyer G, De Greef J, Mellinghoff SC, Nosari A, Thiebaut-Bertrand A, Bergeron A, et al. Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL). Leukemia. 2019;33(4):844–62 This is a review article on the infectious complications associated with agents used in hematology and oncology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riera R, Porfírio GJ, Torloni MR. Alemtuzumab for multiple sclerosis. Cochrane Database Syst Rev. 2016;4(4):Cd011203.

    PubMed  Google Scholar 

  7. Morgan RD, O’Callaghan JM, Knight SR, Morris PJ. Alemtuzumab induction therapy in kidney transplantation: a systematic review and meta-analysis. Transplantation. 2012;93(12):1179–88.

    Article  CAS  PubMed  Google Scholar 

  8. Golay J, Manganini M, Rambaldi A, Introna M. Effect of alemtuzumab on neoplastic B cells. Haematologica. 2004;89(12):1476–83.

    CAS  PubMed  Google Scholar 

  9. Full prescribing information for alemtuzumab [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103948s5158lbl.pdf.

  10. Skoetz N, Bauer K, Elter T, Monsef I, Roloff V, Hallek M, et al. Alemtuzumab for patients with chronic lymphocytic leukaemia. Cochrane Database Syst Rev. 2012;(2):Cd008078.

  11. Baden LR, Swaminathan S, Angarone M, Blouin G, Camins BC, Casper C, et al. Prevention and treatment of cancer-related infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2016;14(7):882–913.

    Article  CAS  Google Scholar 

  12. O'Brien S, Ravandi F, Riehl T, Wierda W, Huang X, Tarrand J, et al. Valganciclovir prevents cytomegalovirus reactivation in patients receiving alemtuzumab-based therapy. Blood. 2008;111(4):1816–9.

    Article  CAS  PubMed  Google Scholar 

  13. Malik O, Saleh S, Suleiman B, Ashqar B, Maibam A, Yaseen M, et al. Prevalence, risk factors, treatment, and overall impact of BK viremia on kidney transplantation. Transplant Proc. 2019;51(6):1801–9.

    Article  CAS  PubMed  Google Scholar 

  14. Theodoropoulos N, Wang E, Penugonda S, Ladner DP, Stosor V, Leventhal J, et al. BK virus replication and nephropathy after alemtuzumab-induced kidney transplantation. Am J Transplant. 2013;13(1):197–206.

    Article  CAS  PubMed  Google Scholar 

  15. Sive JI, Thomson KJ, Morris EC, Ward KN, Peggs KS. Adenoviremia has limited clinical impact in the majority of patients following alemtuzumab-based allogeneic stem cell transplantation in adults. Clin Infect Dis. 2012;55(10):1362–70.

    Article  CAS  PubMed  Google Scholar 

  16. Cupit-Link MC, Nageswara Rao A, Warad DM, Rodriguez V, Khan S. EBV-PTLD, adenovirus, and CMV in pediatric allogeneic transplants with alemtuzumab as part of pretransplant conditioning: a retrospective single center study. J Pediatr Hematol Oncol. 2018;40(8):e473–e8.

    Article  CAS  PubMed  Google Scholar 

  17. Sheikh-Taha M, Corman LC. Pulmonary Nocardia beijingensis infection associated with the use of alemtuzumab in a patient with multiple sclerosis. Mult Scler. 2017;23(6):872–4.

    Article  PubMed  Google Scholar 

  18. Holmøy T, von der Lippe H, Leegaard TM. Listeria monocytogenes infection associated with alemtuzumab - - a case for better preventive strategies. BMC Neurol. 2017;17(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Walsh R, Ortiz J, Foster P, Palma-Vargas J, Rosenblatt S, Wright F. Fungal and mycobacterial infections after Campath (alemtuzumab) induction for renal transplantation. Transpl Infect Dis. 2008;10(4):236–9.

    Article  CAS  PubMed  Google Scholar 

  20. Otahbachi M, Nugent K, Buscemi D. Granulomatous Pneumocystis jiroveci pneumonia in a patient with chronic lymphocytic leukemia: a literature review and hypothesis on pathogenesis. Am J Med Sci. 2007;333(2):131–5.

    Article  PubMed  Google Scholar 

  21. Maertens J, Cesaro S, Maschmeyer G, Einsele H, Donnelly JP, Alanio A, et al. ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J Antimicrob Chemother. 2016;71(9):2397–404.

    Article  CAS  PubMed  Google Scholar 

  22. Moses SE, Lim ZY, Sudhanva M, Devereux S, Ho AY, Pagliuca A, et al. Lamivudine prophylaxis and treatment of hepatitis B virus-exposed recipients receiving reduced intensity conditioning hematopoietic stem cell transplants with alemtuzumab. J Med Virol. 2006;78(12):1560–3.

    Article  CAS  PubMed  Google Scholar 

  23. Reddy KR, Beavers KL, Hammond SP, Lim JK, Falck-Ytter YT. American Gastroenterological Association Institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology. 2015;148(1):215–9 quiz e16-7.

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy CL, Tuohy O, Compston DA, Kumararatne DS, Coles AJ, Jones JL. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology. 2013;81(10):872–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mikulska M, Cesaro S, de Lavallade H, Di Blasi R, Einarsdottir S, Gallo G, et al. Vaccination of patients with haematological malignancies who did not have transplantations: guidelines from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect Dis. 2019;19(6):e188–e99.

    Article  PubMed  Google Scholar 

  26. Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58(3):e44–100.

    Article  PubMed  Google Scholar 

  27. Issa NC, Baden LR. Current issues in vaccines for adult patients with hematologic malignancies. J Natl Compr Cancer Netw. 2012;10(11):1447–54 quiz 54.

    Article  CAS  Google Scholar 

  28. Full prescribing information for Rituximab [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103705s5311lbl.pdf.

  29. Jabbour E, O’Brien S, Ravandi F, Kantarjian H. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125(26):4010–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sacco KA, Abraham RS. Consequences of B-cell-depleting therapy: hypogammaglobulinemia and impaired B cell reconstitution. Immunotherapy. 2018;10(8):713–28.

    Article  CAS  PubMed  Google Scholar 

  31. Avivi I, Stroopinsky D, Katz T. Anti-CD20 monoclonal antibodies: beyond B-cells. Blood Rev. 2013;27(5):217–23.

    Article  CAS  PubMed  Google Scholar 

  32. Mozessohn L, Chan KK, Feld JJ, Hicks LK. Hepatitis B reactivation in HBsAg-negative/HBcAb-positive patients receiving rituximab for lymphoma: a meta-analysis. J Viral Hepat. 2015;22(10):842–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hwang JP, Feld JJ, Hammond SP, Wang SH, Alston-Johnson DE, Cryer DR, et al. Hepatitis B virus screening and management for patients with cancer prior to therapy: ASCO provisional clinical opinion update. J Clin Oncol. 2020:Jco2001757.

  34. Terrault NA, Lok ASF, McMahon BJ, Chang KM, Hwang JP, Jonas MM, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018;67(4):1560–99.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Torres HA, Hosry J, Mahale P, Economides MP, Jiang Y, Lok AS. Hepatitis C virus reactivation in patients receiving cancer treatment: a prospective observational study. Hepatology. 2018;67(1):36–47.

    Article  CAS  PubMed  Google Scholar 

  36. Jhaveri VV, Lasalvia MT. Invasive ureaplasma infection in patients receiving rituximab and other humoral immunodeficiencies-a case report and review of the literature. Open Forum Infect Dis. 2019;6(10):ofz399.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ng HJ, Lim LC. Fulminant hepatitis B virus reactivation with concomitant listeriosis after fludarabine and rituximab therapy: case report. Ann Hematol. 2001;80(9):549–52.

    Article  CAS  PubMed  Google Scholar 

  38. Aksoy S, Harputluoglu H, Kilickap S, Dede DS, Dizdar O, Altundag K, et al. Rituximab-related viral infections in lymphoma patients. Leuk Lymphoma. 2007;48(7):1307–12.

    Article  CAS  PubMed  Google Scholar 

  39. Kassab S, Saghi T, Boyer A, Lafon ME, Gruson D, Lina B, et al. Fatal case of enterovirus 71 infection and rituximab therapy, France, 2012. Emerg Infect Dis. 2013;19:1345–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Carson KR, Evens AM, Richey EA, Habermann TM, Focosi D, Seymour JF, et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood. 2009;113(20):4834–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang X, Mei X, Feng D, Wang X. Prophylaxis and treatment of Pneumocystis jiroveci pneumonia in lymphoma patients subjected to rituximab-contained therapy: a systemic review and meta-analysis. PLoS One. 2015;10(4):e0122171.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68.

    Article  CAS  PubMed  Google Scholar 

  43. Thompson JA, Schneider BJ, Brahmer J, Andrews S, Armand P, Bhatia S, et al. Management of Immunotherapy-related toxicities, Version 1.2019. J Natl Compr Cancer Netw. 2019;17(3):255–89.

    Article  CAS  Google Scholar 

  44. Wright Z, Brown A. High-grade neutropenia in a patient successfully treated with nivolumab for refractory primary mediastinal B-cell lymphoma. Blood Adv. 2017;1(17):1306–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boegeholz J, Brueggen CS, Pauli C, Dimitriou F, Haralambieva E, Dummer R, et al. Challenges in diagnosis and management of neutropenia upon exposure to immune-checkpoint inhibitors: meta-analysis of a rare immune-related adverse side effect. BMC Cancer. 2020;20(1):300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen JH, Pezhouh MK, Lauwers GY, Masia R. Histopathologic features of colitis due to immunotherapy with anti-PD-1 antibodies. Am J Surg Pathol. 2017;41(5):643–54.

    Article  PubMed  Google Scholar 

  47. Nahar KJ, Rawson RV, Ahmed T, Tattersall S, Sandanayake N, Kiely CJ, Lo S, Carlino M, Palendira U, Scolyer RA, Long GV, Menzies AM. Clinicopathological characteristics and management of colitis with anti-PD1 immunotherapy alone or in combination with ipilimumab. J Immunother Cancer. 2020;8(2). https://doi.org/10.1136/jitc-2020-001488

  48. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention clinical practice guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis. 2017;64(2):e1–e33.

    Article  PubMed  Google Scholar 

  50. Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheum. 2016;68(1):1–26.

    Google Scholar 

  51. Fishman JA, Hogan JI, Maus MV. Inflammatory and infectious syndromes associated with cancer immunotherapies. Clin Infect Dis. 2019;69(6):909–20.

    Article  CAS  PubMed  Google Scholar 

  52. Del Castillo M, Romero FA, Argüello E, Kyi C, Postow MA, Redelman-Sidi G. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin Infect Dis. 2016;63(11):1490–3.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Malek A, Khalil M, Hachem R, Chaftari AM, Fares J, Jiang Y, et al. Impact of checkpoint inhibitor immunotherapy primarily pembrolizumab on infection risk in patients with advanced lung cancer: a comparative retrospective cohort study. Clin Infect Dis. 2020.

  54. Läubli H, Balmelli C, Kaufmann L, Stanczak M, Syedbasha M, Vogt D, et al. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events. J Immunother Cancer. 2018;6(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Awadalla M, Golden DLA, Mahmood SS, Alvi RM, Mercaldo ND, Hassan MZO, et al. Influenza vaccination and myocarditis among patients receiving immune checkpoint inhibitors. J Immunother Cancer. 2019;7(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chong CR, Park VJ, Cohen B, Postow MA, Wolchok JD, Kamboj M. Safety of inactivated influenza vaccine in cancer patients receiving immune checkpoint inhibitors. Clin Infect Dis. 2020;70(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  57. Wijn DH, Groeneveld GH, Vollaard AM, Muller M, Wallinga J, Gelderblom H, et al. Influenza vaccination in patients with lung cancer receiving anti-programmed death receptor 1 immunotherapy does not induce immune-related adverse events. Eur J Cancer. 2018;104:182–7.

    Article  CAS  PubMed  Google Scholar 

  58. Abers MS, Lionakis MS, Kontoyiannis DP. Checkpoint inhibition and infectious diseases: a good thing? Trends Mol Med. 2019;25(12):1080–93.

    Article  CAS  PubMed  Google Scholar 

  59. Cortese I, Muranski P, Enose-Akahata Y, Ha SK, Smith B, Monaco M, et al. Pembrolizumab treatment for progressive multifocal leukoencephalopathy. N Engl J Med. 2019;380(17):1597–605.

    Article  CAS  PubMed  Google Scholar 

  60. Walter O, Treiner E, Bonneville F, Mengelle C, Vergez F, Lerebours F, et al. Treatment of progressive multifocal leukoencephalopathy with nivolumab. N Engl J Med. 2019;380(17):1674–6.

    Article  PubMed  Google Scholar 

  61. Medrano C, Vergez F, Mengelle C, Faguer S, Kamar N, Del Bello A. Effectiveness of immune checkpoint inhibitors in transplant recipients with progressive multifocal leukoencephalopathy. Emerg Infect Dis. 2019;25(11):2145–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martinot M, Ahle G, Petrosyan I, Martinez C, Gorun DM, Mohseni-Zadeh M, et al. Progressive multifocal leukoencephalopathy after treatment with nivolumab. Emerg Infect Dis. 2018;24(8):1594–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wittmann T, Horowitz N, Benyamini N, Henig I, Zuckerman T, Rowe JM, et al. JC polyomavirus reactivation is common following allogeneic stem cell transplantation and its preemptive detection may prevent lethal complications. Bone Marrow Transplant. 2015;50(7):984–91.

    Article  CAS  PubMed  Google Scholar 

  64. Takata S, Koh G, Han Y, Yoshida H, Shiroyama T, Takada H, et al. Paradoxical response in a patient with non-small cell lung cancer who received nivolumab followed by anti-Mycobacterium tuberculosis agents. J Infect Chemother. 2019;25(1):54–8.

    Article  PubMed  Google Scholar 

  65. Anastasopoulou A, Ziogas DC, Samarkos M, Kirkwood JM, Gogas H. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: current evidence and clinical practice recommendations. J Immunother Cancer. 2019;7(1):239.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fujita K, Yamamoto Y, Kanai O, Okamura M, Hashimoto M, Nakatani K, et al. Incidence of active tuberculosis in lung cancer patients receiving immune checkpoint inhibitors. Open Forum Infect Dis. 2020;7(5):ofaa126.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Picchi H, Mateus C, Chouaid C, Besse B, Marabelle A, Michot JM, et al. Infectious complications associated with the use of immune checkpoint inhibitors in oncology: reactivation of tuberculosis after anti PD-1 treatment. Clin Microbiol Infect. 2018;24(3):216–8.

    Article  CAS  PubMed  Google Scholar 

  68. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125166s417lbl.pdf.

  69. Vasu S, Wu H, Satoskar A, Puto M, Roddy J, Blum W, et al. Eculizumab therapy in adults with allogeneic hematopoietic cell transplant-associated thrombotic microangiopathy. Bone Marrow Transplant England. 2016;51:1241–4.

    Article  CAS  PubMed  Google Scholar 

  70. Gavriilaki E, Sakellari I, Anagnostopoulos A, Brodsky RA. Transplant-associated thrombotic microangiopathy: opening Pandora’s box. Bone Marrow Transplant. 2017;52(10):1355–60.

    Article  CAS  PubMed  Google Scholar 

  71. Legendre CM, Campistol JM, Feldkamp T, Remuzzi G, Kincaid JF, Lommelé Å, et al. Outcomes of patients with atypical haemolytic uraemic syndrome with native and transplanted kidneys treated with eculizumab: a pooled post hoc analysis. Transpl Int. 2017;30(12):1275–83.

    Article  CAS  PubMed  Google Scholar 

  72. Frémeaux-Bacchi V, Legendre CM. The emerging role of complement inhibitors in transplantation. Kidney Int. 2015;88(5):967–73.

    Article  PubMed  Google Scholar 

  73. Lee JW, Sicre de Fontbrune F, Wong Lee Lee L, Pessoa V, Gualandro S, Füreder W, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood. 2019;133(6):530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kulasekararaj AG, Hill A, Rottinghaus ST, Langemeijer S, Wells R, Gonzalez-Fernandez FA, et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood. 2019;133(6):540–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McNamara LA, Topaz N, Wang X, Hariri S, Fox L, MacNeil JR. High risk for invasive meningococcal disease among patients receiving eculizumab (Soliris) despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep. 2017;66(27):734–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Winthrop KL, Mariette X, Silva JT, Benamu E, Calabrese LH, Dumusc A, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect. 2018.

  77. Struijk GH, Bouts AH, Rijkers GT, Kuin EA, ten Berge IJ, Bemelman FJ. Meningococcal sepsis complicating eculizumab treatment despite prior vaccination. Am J Transplant. 2013;13(3):819–20.

    Article  CAS  PubMed  Google Scholar 

  78. Nolfi-Donegan D, Konar M, Vianzon V, MacNeil J, Cooper J, Lurie P, et al. Fatal Nongroupable Neisseria meningitidis disease in vaccinated patient receiving eculizumab. Emerg Infect Dis. 2018;24(8):1561–4.

    Article  CAS  PubMed Central  Google Scholar 

  79. Hublikar S, Maher WE, Bazan JA. Disseminated gonococcal infection and eculizumab--a "high risk" connection? Sex Transm Dis. 2014;41(12):747–8.

    Article  PubMed  Google Scholar 

  80. Crew PE, Abara WE, McCulley L, Waldron PE, Kirkcaldy RD, Weston EJ, et al. Disseminated gonococcal infections in patients receiving eculizumab: a case series. Clin Infect Dis. 2019;69(4):596–600.

    Article  PubMed  Google Scholar 

  81. Bhatt G, Maddocks K, Christian B. CD30 and CD30-targeted therapies in Hodgkin lymphoma and other B cell lymphomas. Curr Hematol Malig Rep. 2016;11(6):480–91.

    Article  PubMed  Google Scholar 

  82. Bhatt S, Ashlock BM, Natkunam Y, Sujoy V, Chapman JR, Ramos JC, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood. 2013;122(7):1233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44.

    Article  CAS  PubMed  Google Scholar 

  84. Marchesini G, Nadali G, Facchinelli D, Candoni A, Cattaneo C, Cuccaro A, et al. Infections in patients with lymphoproliferative diseases treated with brentuximab vedotin: SEIFEM multicentric retrospective study. Leuk Lymphoma. 2020:1–4.

  85. Nademanee A, Sureda A, Stiff P, Holowiecki J, Abidi M, Hunder N, et al. Safety analysis of brentuximab vedotin from the phase III AETHERA trial in Hodgkin lymphoma in the post-transplant consolidation setting. Biol Blood Marrow Transplant. 2018;24(11):2354–9.

    Article  CAS  PubMed  Google Scholar 

  86. Mukkada S, Metzger ML, Santiago T, Wolf J. Severe progressive Mycobacterium avium complex infection associated with brentuximab vedotin therapy. J Pediatric Infect Dis Soc. 2019;8(4):371–3.

    Article  PubMed  Google Scholar 

  87. Tudesq JJ, Vincent L, Lebrun J, Hicheri Y, Gabellier L, Busetto T, et al. Cytomegalovirus infection with retinitis after brentuximab vedotin treatment for CD30(+) lymphoma. Open Forum Infect Dis. 2017;4(2):ofx091.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ferreira AM, Ramos JF, Fatobene G, Rocha V. Pneumocystis jirovecii pneumonia during brentuximab vedotin therapy: a case report and literature review. Case Rep Hematol. 2019;2019:8982937.

    PubMed  PubMed Central  Google Scholar 

  89. Carson KR, Newsome SD, Kim EJ, Wagner-Johnston ND, von Geldern G, Moskowitz CH, et al. Progressive multifocal leukoencephalopathy associated with brentuximab vedotin therapy: a report of 5 cases from the Southern Network on Adverse Reactions (SONAR) project. Cancer. 2014;120(16):2464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Raisch DW, Rafi JA, Chen C, Bennett CL. Detection of cases of progressive multifocal leukoencephalopathy associated with new biologicals and targeted cancer therapies from the FDA’s adverse event reporting system. Expert Opin Drug Saf. 2016;15(8):1003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 2016;374(4):333–43.

    Article  CAS  PubMed  Google Scholar 

  92. Full prescribing information for belatacept [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125288s070lbl.pdf.

  93. Timofte I, Terrin M, Barr E, Sanchez P, Kim J, Reed R, et al. Belatacept for renal rescue in lung transplant patients. Transpl Int. 2016;29(4):453–63.

    Article  CAS  PubMed  Google Scholar 

  94. Iasella CJ, Winstead RJ, Moore CA, Johnson BA, Feinberg AT, Morrell MR, et al. Maintenance belatacept-based immunosuppression in lung transplantation recipients who failed calcineurin inhibitors. Transplantation. 2018;102(1):171–7.

    Article  CAS  PubMed  Google Scholar 

  95. Durrbach A, Pestana JM, Pearson T, Vincenti F, Garcia VD, Campistol J, et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant. 2010;10(3):547–57.

    Article  CAS  PubMed  Google Scholar 

  96. Klintmalm GB, Feng S, Lake JR, Vargas HE, Wekerle T, Agnes S, et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. Am J Transplant. 2014;14(8):1817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10(3):535–46.

    Article  CAS  PubMed  Google Scholar 

  98. Subramanian AK, Theodoropoulos NM, Transplantation tIDCoPotASo. Mycobacterium tuberculosis infections in solid organ transplantation: guidelines from the infectious diseases community of practice of the American Society of Transplantation. Clin Transpl. 2019;33(9):e13513.

    Article  Google Scholar 

  99. Bertrand D, Chavarot N, Gatault P, Garrouste C, Bouvier N, Grall-Jezequel A, et al. Opportunistic infections after conversion to belatacept in kidney transplantation. Nephrol Dial Transplant. 2020;35(2):336–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab El Boghdadly.

Ethics declarations

Conflict of Interest

Dr. El Boghdadly, Dr. Sarwar, and Dr. Lustberg declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Transplant and Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Boghdadly, Z., Sarwar, S. & Lustberg, M.E. Infectious Challenges with Novel Antibody–Based Therapies. Curr Infect Dis Rep 23, 10 (2021). https://doi.org/10.1007/s11908-021-00753-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11908-021-00753-2

Keywords

Navigation