Skip to main content

Advertisement

Log in

Molecular Diagnostic Advances in Transplant Infectious Diseases

  • Transplant and Oncology (M Ison, N Theodoropoulos and S Pergam, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The infectious complications of transplantation can have devastating consequences for patients. Early and accurate diagnosis is essential to good outcomes. This review describes recent advances in pathogen-directed diagnostic testing and discusses the role of new methods for transplant infectious diseases.

Recent Findings

Several molecular assays have been introduced into clinical practice in recent years. When the results of rapid testing are linked to patient-specific interventions, improved outcomes can be realized. Syndromic testing along with metagenomic next-generation sequencing (mNGS) represents novel approaches to infection diagnosis. However, the optimal use of these tests for transplant patients along with an overall assessment of cost-effectiveness demands further study.

Summary

Molecular diagnostics are revolutionizing transplant care. Clinicians need to be aware of the current diagnostic landscape and have a working knowledge of the nuances related to test performance, result interpretation, and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fung M, Zompi S, Seng H, Hollemon D, Parham A, Hong DK, et al. Plasma cell-free DNA next-generation sequencing to diagnose and monitor infections in allogeneic hematopoietic stem cell transplant patients. Open Forum Infect Dis. 2018;5(12):ofy301.

    PubMed  PubMed Central  Google Scholar 

  2. De Vlaminck I, Martin L, Kertesz M, Patel K, Kowarsky M, Strehl C, et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc Natl Acad Sci U S A. 2015;112(43):13336–41.

    PubMed  PubMed Central  Google Scholar 

  3. Banerjee R, Teng CB, Cunningham SA, Ihde SM, Steckelberg JM, Moriarty JP, et al. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis. 2015;61(7):1071–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51–77.

    PubMed  PubMed Central  Google Scholar 

  5. Florescu DF, Sandkovsky U, Kalil AC. Sepsis and challenging infections in the immunosuppressed patient in the intensive care unit. Infect Dis Clin N Am. 2017;31(3):415–34.

    Google Scholar 

  6. Dandoy CE, Ardura MI, Papanicolaou GA, Auletta JJ. Bacterial bloodstream infections in the allogeneic hematopoietic cell transplant patient: new considerations for a persistent nemesis. Bone Marrow Transplant. 2017;52(8):1091–106.

    CAS  PubMed  Google Scholar 

  7. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136(5):1237–48.

    PubMed  Google Scholar 

  8. • Ramanan P, Bryson AL, Binnicker MJ, Pritt BS, Patel R. Syndromic panel-based testing in clinical microbiology. Clin Microbiol Rev. 2018;31(1):e00024–17 This is a useful review of current commercial panel-based molecular diagnostics.

    CAS  PubMed  Google Scholar 

  9. Huang TD, Melnik E, Bogaerts P, Evrard S, Glupczynski Y. Evaluation of the ePlex blood culture identification panels for detection of pathogens in bloodstream infections. J Clin Microbiol. 2019;57(2):e01597–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brazelton de Cárdenas JN, Su Y, Rodriguez A, Hewitt C, Tang L, Garner CD, et al. Evaluation of rapid phenotypic identification and antimicrobial susceptibility testing in a pediatric oncology center. Diagn Microbiol Infect Dis. 2017;89(1):52–7.

    PubMed  Google Scholar 

  11. Marschal M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann M, Peter S. Evaluation of the Accelerate Pheno System for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J Clin Microbiol. 2017;55(7):2116–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. •• Mylonakis E, Zacharioudakis IM, Clancy CJ, Nguyen MH, Pappas PG. Efficacy of T2 Magnetic resonance assay in monitoring candidemia after initiation of antifungal therapy: the Serial Therapeutic and Antifungal Monitoring Protocol (STAMP) Trial. J Clin Microbiol. 2018;56(4):e01756–17 This study shows that T2MR assay significantly outperformed blood cultures for monitoring the clearance of candidemia in patients receiving antifungal therapy.

    PubMed  PubMed Central  Google Scholar 

  13. De Angelis G, Posteraro B, De Carolis E, Menchinelli G, Franceschi F, Tumbarello M, et al. T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. J Antimicrob Chemother. 2018;73(suppl_4):iv20–iv6.

    PubMed  Google Scholar 

  14. Nguyen MH, Clancy CJ, Pasculle AW, Pappas PG, Alangaden G, Pankey GA, et al. Performance of the T2Bacteria panel for diagnosing bloodstream infections: a diagnostic accuracy study. Ann Intern Med 2019.

  15. Urgent: Field Safety Notice: Increased risk of false positive Proteus results using FilmArray Blood Culture Identification Panel (Part No.: RFIT-ASY-0126 and RFIT-ASY-0127) with BD BACTEC Blood Culture Bottles [press release]. Biofiredx.com 2018.

  16. Sesler CL, Hockman DB, Malone LL, Stalons D, Grigorenko E. Identification of Residual DNA contaminants in sterile blood culture media. Diatherix: Association of Microbiology Conference; 2014.

    Google Scholar 

  17. She RC, Bender JM. Advances in rapid molecular blood culture diagnostics: healthcare impact, laboratory implications, and multiplex technologies. J Appl Lab Med. 2019;3(4):617–30.

    CAS  PubMed  Google Scholar 

  18. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/index.html.. Accessed 10 Nov 2019

  19. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–9.

    CAS  PubMed  Google Scholar 

  20. Muñoz P, Vena A, Machado M, Martínez-Jiménez MC, Gioia F, Gómez E, et al. T2MR contributes to the very early diagnosis of complicated candidaemia. A prospective study. J Antimicrob Chemother. 2018;73(suppl_4):iv13–iv9.

    PubMed  Google Scholar 

  21. Patch ME, Weisz E, Cubillos A, Estrada SJ, Pfaller MA. Impact of rapid, culture-independent diagnosis of candidaemia and invasive candidiasis in a community health system. J Antimicrob Chemother. 2018;73(suppl_4):iv27–30.

    CAS  PubMed  Google Scholar 

  22. • Muñoz P, Vena A, Machado M, Gioia F, Martínez-Jiménez MC, Gómez E, et al. T2Candida MR as a predictor of outcome in patients with suspected invasive candidiasis starting empirical antifungal treatment: a prospective pilot study. J Antimicrob Chemother. 2018;73(suppl_4):iv6–iv12 This study highlights the role of the T2MR assay as a predictive tool for poor outcomes in patients with suspected invasive candidiasis, who may benefit from maintaining antifungal therapy.

    PubMed  Google Scholar 

  23. Walker B, Powers-Fletcher MV, Schmidt RL, Hanson KE. Cost-effectiveness analysis of multiplex PCR with magnetic resonance detection versus empiric or blood culture-directed therapy for management of suspected Candidemia. J Clin Microbiol. 2016;54(3):718–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol. 2019;4(4):663–74 This provides a thorough validation of a novel plasma cfDNA test for sepsis.

    CAS  PubMed  Google Scholar 

  25. Grumaz S, Stevens P, Grumaz C, Decker SO, Weigand MA, Hofer S, et al. Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med. 2016;8(1):73.

  26. Wanda L, Ruffin F, Hill-Rorie J, Hollemon D, Seng H, Hong D, et al. Direct detection and quantification of bacterial cell-free DNA in patients with bloodstream infection (bsi) using the Karius plasma next generation sequencing (NGS) test. Open Forum Infectious Diseases. 2017;4(Suppl_1):ofx163.

    Google Scholar 

  27. Edmiston CE, Garcia R, Barnden M, DeBaun B, Johnson HB. Rapid diagnostics for bloodstream infections: a primer for infection preventionists. Am J Infect Control. 2018;46(9):1060–8.

    PubMed  Google Scholar 

  28. • Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis: an official publication of the Infectious Diseases Society of America. 2017;64(1):15–23 This is a useful review of clinical outcomes from rapid molecular testing in septic patients.

    Google Scholar 

  29. Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA, et al. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev. 2016;29(1):59–103.

    PubMed  Google Scholar 

  30. •• Robilotti E, Holubar M, Seo SK, Deresinski S. Feasibility and applicability of antimicrobial stewardship in immunocompromised patients. Curr Opin Infect Dis. 2017;30(4):346–53 This review paper addresses common principles for implementation of antimicrobial stewardship in immunocompromised patients.

    PubMed  Google Scholar 

  31. Seo SK, Lo K, Abbo LM. Current state of antimicrobial stewardship at solid organ and hematopoietic cell transplant centers in the United States. Infect Control Hosp Epidemiol. 2016;37(10):1195–200.

    PubMed  PubMed Central  Google Scholar 

  32. Hammond SP, Gagne LS, Stock SR, Marty FM, Gelman RS, Marasco WA, et al. Respiratory virus detection in immunocompromised patients with FilmArray respiratory panel compared to conventional methods. J Clin Microbiol. 2012;50(10):3216–21.

    PubMed  PubMed Central  Google Scholar 

  33. Kumar D, Husain S, Chen MH, Moussa G, Himsworth D, Manuel O, et al. A prospective molecular surveillance study evaluating the clinical impact of community-acquired respiratory viruses in lung transplant recipients. Transplantation. 2010;89(8):1028–33.

    PubMed  Google Scholar 

  34. von Lilienfeld-Toal M, Berger A, Christopeit M, Hentrich M, Heussel CP, Kalkreuth J, et al. Community acquired respiratory virus infections in cancer patients-guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for haematology and Medical Oncology. Eur J Cancer. 2016;67:200–12.

    Google Scholar 

  35. Hirsch HH, Martino R, Ward KN, Boeckh M, Einsele H, Ljungman P. Fourth European Conference on infections in leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis. 2013;56(2):258–66.

    PubMed  Google Scholar 

  36. Dignan FL, Clark A, Aitken C, Gilleece M, Jayakar V, Krishnamurthy P, et al. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol. 2016;173(3):380–93.

    PubMed  PubMed Central  Google Scholar 

  37. Manuel O, Estabrook M, Practice AST Infectious Diseases Community of Practice. RNA respiratory viruses in solid organ transplantation. Am J Transplant. 2013;13(Suppl 4):212–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. GenMarkDx I. ePlex respiratory pathogen panel genmarkdx.com: GenMarkDx, Inc.; 2019 [cited 2017. Available from: https://www.genmarkdx.com/wp-content/uploads/2017/11/GNMK-IMC-1060-B-US-RP-Brochure.pdf. Accessed 10 Nov 2019

  39. Administration USFaD. ePlex respiratory pathogen (RP) panel CFR 866.3980: U.S. Food and Drug Administration; 2017 [Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K163636.pdf. Accessed 10 Nov 2019

  40. Administration USFaD. BioFire FilmArray pneumonia panel 21 CFR 866.3985: U.S. Food and Drug Administration; 2018 [Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf18/K180966.pdf. Accessed 10 Nov 2019

  41. Diagnostics B. The BioFire FilmArray pneumonia panel: BioFire Diagnostics; 2018 [Available from: https://www.biofiredx.com/products/the-filmarray-panels/filmarray-pneumonia/. Accessed 10 Nov 2019

  42. Corporation L. The VERIGENE Respiratory Pathogens Flex Test (RP Flex) is a flexible multiplex panel that addressed the full continuum of respiratory testing needs.: Luminex Corporation; 2019 [Available from: https://www.luminexcorp.com/respiratory-pathogens-flex-test/. Accessed 10 Nov 2019

  43. USA C. Unyvero LRT: clear direction for hospitalized pneumonia patients: Curetis USA, Inc; 2019 [Available from: https://www.curetisusa.com/wp-content/uploads/Unyvero-LRT-Clear-Direction_2-pager.pdf. Accessed 10 Nov 2019

  44. Popowitch EB, O’Neill SS, Miller MB. Comparison of the BioFire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses. J Clin Microbiol. 2013;51(5):1528–33.

    PubMed  PubMed Central  Google Scholar 

  45. Jamal W, Al Roomi E, AbdulAziz LR, Rotimi VO. Evaluation of Curetis Unyvero, a multiplex PCR-based testing system, for rapid detection of bacteria and antibiotic resistance and impact of the assay on management of severe nosocomial pneumonia. J Clin Microbiol. 2014;52(7):2487–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Qi C, Wunderink RG, Sims M, Humphries RM, Kallstrom G, Carroll KC, et al. Multicenter clinical trial of the Unyvero lower respiratory tract infection application. Unyvero: European Congress of Clinical Microbiology & Infectious Disease; 2018.

    Google Scholar 

  47. USA C. Unyvero LRT: clear direction for hospitalized pneumonia patients. Curetis USA, Inc; 2019.

  48. USA C. Curetis launches Unyvero System and LRT Cartridge for lower respiratory tract infections in the U.S.: Curetis USA, Inc; 2018.

  49. Faron ML, Mahmutoglu E, Huang A J.M B-L, Relich RF, Humphries R, et al. Clinical evaluation of a semi-quantitative multiplex molecular assay for the identification of bacteria, viruses, and fungi in lower respiratory specimens. 2018.

  50. Iannello A, Dubost C, Weber C, Albert-Segui C, Mousset C, Ginocchio C, et al. Evaluation of the BioFire pnuemonia panel in ICU patients with suspected ventilator-associated pneumonia. San Francisco: IDWeek; 2018.

    Google Scholar 

  51. Administration USFaD. Biofire 21 CFR 866.3985: U.S. Food and Drug Administration; 2018 [Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf18/K180966.pdf. Accessed 10 Nov 2019

  52. Langelier C, Kalantar KL, Moazed F, Wilson MR, Crawford ED, Deiss T, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci U S A. 2018;115(52):E12353–E62.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Langelier C, Zinter MS, Kalantar K, Yanik GA, Christenson S, O’Donovan B, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients. Am J Respir Crit Care Med. 2018;197(4):524–8.

    PubMed  PubMed Central  Google Scholar 

  54. Young BA, Xie H, Thomas DJ, Snow TM, Hanson KE. The diagnostic yield of universal pathogen detection by next-generation sequencing compared to the standard of care in patients with lower respiratory infections. San Antonio: Association for Molecular Pathology Annual Meeting; 2018.

    Google Scholar 

  55. Zinter MS, Dvorak CC, Mayday MY, Iwanaga K, Ly NP, McGarry ME, et al. Pulmonary metagenomic sequencing suggests missed infections in immunocompromised children. Clin Infect Dis: an official publication of the Infectious Diseases Society of America. 2018;68(11):1847–55.

    Google Scholar 

  56. Pinsky BA, Hayden RT. Cost-Effective Respiratory Virus Testing. J Clin Microbiol. 2019;57(9):e00373–19.

    PubMed  PubMed Central  Google Scholar 

  57. Vos LM, Bruning AHL, Reitsma JB, Schuurman R, Riezebos-Brilman A, Hoepelman AIM, et al. Rapid molecular tests for influenza, respiratory syncytial virus, and other respiratory viruses: a systematic review of diagnostic accuracy and clinical impact studies. Clin Infect Dis. 2019;69(7):1243–53.

    PubMed  Google Scholar 

  58. Angarone M, Ison MG. Diarrhea in solid organ transplant recipients. Curr Opin Infect Dis. 2015;28(4):308–16.

    PubMed  Google Scholar 

  59. Lee LY, Ison MG. Diarrhea caused by viruses in transplant recipients. Transpl Infect Dis. 2014;16(3):347–58.

    CAS  PubMed  Google Scholar 

  60. Echenique IA, Penugonda S, Stosor V, Ison MG, Angarone MP. Diagnostic yields in solid organ transplant recipients admitted with diarrhea. Clin Infect Dis. 2015;60(5):729–37.

    CAS  PubMed  Google Scholar 

  61. Breuer C, Döring S, Rohde H, Rutkowski S, Müller I, Oh J. Clostridium difficile infection after pediatric solid organ transplantation: a practical single-center experience. Pediatr Nephrol. 2019.

  62. Stockmann C, Rogatcheva M, Harrel B, Vaughn M, Crisp R, Poritz M, et al. How well does physician selection of microbiologic tests identify Clostridium difficile and other pathogens in paediatric diarrhoea? Insights using multiplex PCR-based detection. Clin Microbiol Infect. 2015;21(2):179.e9-15.

    PubMed  Google Scholar 

  63. Trinh SA, Echenique IA, Penugonda S, Angarone MP. Optimal strategies for the diagnosis of community-onset diarrhea in solid organ transplant recipients: Less is more. Transpl Infect Dis. 2017;19(2).

    Google Scholar 

  64. Huang RS, Johnson CL, Pritchard L, Hepler R, Ton TT, Dunn JJ. Performance of the Verigene® enteric pathogens test, BioFire FilmArray™ gastrointestinal panel and Luminex xTAG® gastrointestinal pathogen panel for detection of common enteric pathogens. Diagn Microbiol Infect Dis. 2016;86(4):336–9.

    CAS  PubMed  Google Scholar 

  65. Beal SG, Tremblay EE, Toffel S, Velez L, Rand KH. A Gastrointestinal PCR panel improves clinical management and lowers health care costs. J Clin Microbiol. 2018;56(1):e01457–17.

    PubMed  Google Scholar 

  66. Hitchcock MM, Gomez CA, Banaei N. Low yield of FilmArray GI panel in hospitalized patients with diarrhea: an opportunity for diagnostic stewardship intervention. J Clin Microbiol. 2018;56(3):e01558–17.

    PubMed  PubMed Central  Google Scholar 

  67. Hanson KE, Couturier MR. Multiplexed molecular diagnostics for respiratory, gastrointestinal, and central nervous system infections. Clin Infect Dis. 2016;63(10):1361–7.

    PubMed  Google Scholar 

  68. Robilotti E, Powell E, Usiak S, Taur Y, Babady NE, Kamboj M. The Perils of multiplex gastrointestinal pathogen panels: pseudo-outbreaks of Salmonellae and Entamoeba histolytica in immunocompromised hosts. Infect Control Hosp Epidemiol. 2018;39(7):867–70.

    PubMed  Google Scholar 

  69. Technical Alert: Rapid GI panel requires confirmation for Campylobacter and Cryptosporidium. [press release]. Diagnostic Laboratory Services, Inc.2019.

  70. Alejo-Cancho I, Fernández Avilés F, Capón A, Rodríguez C, Barrachina J, Salvador P, et al. Evaluation of a multiplex panel for the diagnosis of acute infectious diarrhea in immunocompromised hematologic patients. PLoS One. 2017;12(11):e0187458.

    PubMed  PubMed Central  Google Scholar 

  71. McMillen T, Lee YJ, Kamboj M, Babady NE. Limited diagnostic value of a multiplexed gastrointestinal pathogen panel for the detection of adenovirus infection in an oncology patient population. J Clin Virol. 2017;94:37–41.

    PubMed  Google Scholar 

  72. Park S, Hitchcock MM, Gomez CA, Banaei N. Is follow-up testing with the FilmArray gastrointestinal multiplex PCR panel necessary? J Clin Microbiol. 2017;55(4):1154–61.

    PubMed  PubMed Central  Google Scholar 

  73. Goldenberg SD, Bacelar M, Brazier P, Bisnauthsing K, Edgeworth JD. A cost benefit analysis of the Luminex xTAG gastrointestinal pathogen panel for detection of infectious gastroenteritis in hospitalised patients. J Inf Secur. 2015;70(5):504–11.

    Google Scholar 

  74. Rand KH, Tremblay EE, Hoidal M, Fisher LB, Grau KR, Karst SM. Multiplex gastrointestinal pathogen panels: implications for infection control. Diagn Microbiol Infect Dis. 2015;82(2):154–7.

    PubMed  Google Scholar 

  75. Buss SN, Alter R, Iwen PC, Fey PD. Implications of culture-independent panel-based detection of Cyclospora cayetanensis. J Clin Microbiol. 2013;51(11):3909.

    PubMed  PubMed Central  Google Scholar 

  76. Xiao J, Peng Z, Liao Y, Sun H, Chen W, Chen X, et al. Organ transplantation and gut microbiota: current reviews and future challenges. Am J Transl Res. 2018;10(11):3330–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kayshap PC, Quigley EM. Therapeutic implications of the gastrointestinal microbiome. Curr Opin Pharmacol. 2018;38:90–6.

    CAS  Google Scholar 

  78. Jia J, Tian X, Jiang J, Ren Z, Lu H, He N, et al. Structural shifts in the intestinal microbiota of rats treated with cyclosporine A after orthotropic liver transplantation. Front Med. 2019;13(4):451–60.

    PubMed  Google Scholar 

  79. Golob JL, Pergam SA, Srinivasan S, Fiedler TL, Liu C, Garcia K, et al. Stool microbiota at neutrophil recovery is predictive for severe acute graft vs host disease after hematopoietic cell transplantation. Clin Infect Dis. 2017;65(12):1984–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017;35(15):1650–9.

    PubMed  PubMed Central  Google Scholar 

  81. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20(5):640–5.

    PubMed  PubMed Central  Google Scholar 

  82. Glaser CA, Gilliam S, Schnurr D, Forghani B, Honarmand S, Khetsuriani N, et al. In search of encephalitis etiologies: diagnostic challenges in the California Encephalitis Project, 1998-2000. Clin Infect Dis. 2003;36(6):731–42.

    PubMed  Google Scholar 

  83. Wright AJ, Fishman JA. Central nervous system syndromes in solid organ transplant recipients. Clin Infect Dis. 2014;59(7):1001–11.

    CAS  PubMed  Google Scholar 

  84. Leber AL, Everhart K, Balada-Llasat JM, Cullison J, Daly J, Holt S, et al. Multicenter evaluation of BioFire FilmArray Meningitis/Encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J Clin Microbiol. 2016;54(9):2251–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Blaschke AJ, Holmberg K, Daly J, Leber A, Bard JD, Bourzac K, et al. Retrospective evaluation of infants 1-60 days evaluated for meningitis using the FilmArray Meningitis/Encephalitis (ME) panel. Open Forum Infect Dis. 2017;4(suppl_1):S8.

    PubMed Central  Google Scholar 

  86. Powell K, Revoolinski S, Gibble A, Daniels A, Wainaina JN, Huang AA. Single-center, quasi-experimental study to evaluate the impact of a multiplex polymerase chain reaction system combined with antimicrobial stewardship intervention on time to targeted therapy in patients with suspected central nervous system infection. Open Forum Infect Dis. 2017;4(Suppl 1):S8.

    PubMed Central  Google Scholar 

  87. O’Halloran JA, Franklin A, Lainhart W, Burnham CA, Powderly W, Dubberke E. Pitfalls associated with the use of molecular diagnostic panels in the diagnosis of Cryptococcal meningitis. Open Forum Infect Dis. 2017;4(4):ofx242.

    PubMed  PubMed Central  Google Scholar 

  88. Gomez CA, Pinsky BA, Liu A, Banaei N. Delayed diagnosis of tuberculous meningitis misdiagnosed as herpes simplex virus-1 encephalitis with the FilmArray syndromic polymerase chain reaction panel. Open Forum Infect Dis. 2017;4(1):ofw245.

    PubMed  Google Scholar 

  89. Green DA, Pereira M, Miko B, Radmard S, Whittier S, Thakur K. Clinical significance of human herpesvirus 6 positivity on the FilmArray Meningitis/Encephalitis panel. Clin Infect Dis. 2018;67(7):1125–8.

    PubMed  Google Scholar 

  90. Pellett Madan R, Hand J. Practice AIDCo. Human herpesvirus 6, 7 and 8 in solid organ transplantation-guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019;33:e13518.

    Google Scholar 

  91. Ogata M, Fukuda T, Teshima T. Human herpesvirus-6 encephalitis after allogeneic hematopoietic cell transplantation: what we do and do not know. Bone Marrow Transplant. 2015;50(8):1030–6.

    CAS  PubMed  Google Scholar 

  92. Hanson KE, Slechta ES, Killpack JA, Heyrend C, Lunt T, Daly JA, et al. Preclinical assessment of a fully automated multiplex PCR panel for detection of central nervous system pathogens. J Clin Microbiol. 2016;54(3):785–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wilson MR, O’Donovan BD, Gelfand JM, Sample HA, Chow FC, Betjemann JP, et al. Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol. 2018;75(8):947–55.

    PubMed  PubMed Central  Google Scholar 

  94. Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu G, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;370(25):2408–17.

    PubMed  PubMed Central  Google Scholar 

  95. Murkey JA, Chew KW, Carlson M, Shannon CL, Sirohi D, Sample HA, et al. Hepatitis E virus-associated meningoencephalitis in a lung transplant recipient diagnosed by clinical metagenomic sequencing. Open Forum Infect Dis. 2017;4(3):ofx121.

    PubMed  PubMed Central  Google Scholar 

  96. Brown JR, Bharucha T, Breuer J. Encephalitis diagnosis using metagenomics: application of next generation sequencing for undiagnosed cases. J Inf Secur. 2018;76(3):225–40.

    Google Scholar 

  97. •• Wilson MR, Sample HA, Zorn KC, Arevalo S, Yu G, Neuhaus J, et al. Clinical Metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med. 2019;380(24):2327–40 This study is the largest multi-site case series evaluating the role of a mNGS-based pathogen-detection platform for diagnosis of meningitis and encephalitis.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091–100.

    PubMed  Google Scholar 

  99. Perfect JR, Hachem R, Wingard JR. Update on epidemiology of and preventive strategies for invasive fungal infections in cancer patients. Clin Infect Dis. 2014;59(Suppl 5):S352–5.

    CAS  PubMed  Google Scholar 

  100. Neofytos D, Horn D, Anaissie E, Steinbach W, Olyaei A, Fishman J, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis. 2009;48(3):265–73.

    CAS  PubMed  Google Scholar 

  101. Cesaro S, Tridello G, Blijlevens N, Ljungman P, Craddock C, Michallet M, et al. Incidence, risk factors, and long-term outcome of acute leukemia patients with early candidemia after allogeneic stem cell transplantation: a study by the Acute Leukemia and Infectious Diseases Working Parties of European Society for Blood and Marrow Transplantation. Clin Infect Dis. 2018;67(4):564–72.

    CAS  PubMed  Google Scholar 

  102. Douglas AP, Chen SC, Slavin MA. Emerging infections caused by non-Aspergillus filamentous fungi. Clin Microbiol Infect. 2016;22(8):670–80.

    CAS  PubMed  Google Scholar 

  103. Spivak ES, Hanson KE. Candida auris: an emerging fungal pathogen. J Clin Microbiol. 2018;56(2):e01588–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. • Schwartz IS, Patterson TF. The Emerging threat of antifungal resistance in transplant infectious diseases. Curr Infect Dis Rep. 2018;20(3):2 In this review article, the authors describe the global emergence of antifungal resistance among Candida spp. and Aspergillus spp. and its impact in transplant recipients.

  105. Colombo AL, Junior JNA, Guinea J. Emerging multidrug-resistant Candida species. Curr Opin Infect Dis. 2017;30(6):528–38.

    PubMed  Google Scholar 

  106. Chamilos G, Lewis RE, Kontoyiannis DP. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis. 2008;47(4):503–9.

    PubMed  Google Scholar 

  107. Halliday CL, Kidd SE, Sorrell TC, Chen SC. Molecular diagnostic methods for invasive fungal disease: the horizon draws nearer? Pathology. 2015;47(3):257–69.

    CAS  PubMed  Google Scholar 

  108. Arvanitis M, Anagnostou T, Fuchs BB, Caliendo AM, Mylonakis E. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev. 2014;27(3):490–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Powers-Fletcher MV, Hanson KE. Nonculture diagnostics in fungal disease. Infect Dis Clin N Am. 2016;30(1):37–49.

    Google Scholar 

  110. Ramanan P, Wengenack NL, Theel ES. Laboratory diagnostics for fungal infections: a review of current and future diagnostic assays. Clin Chest Med. 2017;38(3):535–54.

    PubMed  Google Scholar 

  111. Buchheidt D, Reinwald M, Hoenigl M, Hofmann WK, Spiess B, Boch T. The evolving landscape of new diagnostic tests for invasive aspergillosis in hematology patients: strengths and weaknesses. Curr Opin Infect Dis. 2017;30(6):539–44.

    PubMed  Google Scholar 

  112. Springer J, White PL, Hamilton S, Michel D, Barnes RA, Einsele H, et al. Comparison of performance characteristics of Aspergillus PCR in testing a range of blood-based samples in accordance with international methodological recommendations. J Clin Microbiol. 2016;54(3):705–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Loeffler J, Mengoli C, Springer J, Bretagne S, Cuenca-Estrella M, Klingspor L, et al. Analytical comparison of in vitro-spiked human serum and plasma for pcr-based detection of Aspergillus fumigatus DNA: a study by the European Aspergillus PCR initiative. J Clin Microbiol. 2015;53(9):2838–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. White PL, Barnes RA, Springer J, Klingspor L, Cuenca-Estrella M, Morton CO, et al. Clinical performance of aspergillus pcr for testing serum and plasma: a study by the European Aspergillus PCR initiative. J Clin Microbiol. 2015;53(9):2832–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Buchheidt D, Reinwald M, Hofmann WK, Boch T, Spiess B. Evaluating the use of PCR for diagnosing invasive aspergillosis. Expert Rev Mol Diagn. 2017;17(6):603–10.

    CAS  PubMed  Google Scholar 

  116. White PL, Wingard JR, Bretagne S, Loffler J, Patterson TF, Slavin MA, et al. Aspergillus polymerase chain reaction: systematic review of evidence for clinical use in comparison with antigen testing. Clin Infect Dis. 2015;61(8):1293–303.

    PubMed  PubMed Central  Google Scholar 

  117. Boch T, Reinwald M, Postina P, Cornely OA, Vehreschild JJ, Heußel CP, et al. Identification of invasive fungal diseases in immunocompromised patients by combining an Aspergillus specific PCR with a multifungal DNA-microarray from primary clinical samples. Mycoses. 2015;58(12):735–45.

    CAS  PubMed  Google Scholar 

  118. Cruciani M, Mengoli C, Loeffler J, Donnelly P, Barnes R, Jones BL, et al. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev. 2015;10:CD009551.

    Google Scholar 

  119. Aguado JM, Vázquez L, Fernández-Ruiz M, Villaescusa T, Ruiz-Camps I, Barba P, et al. Serum galactomannan versus a combination of galactomannan and polymerase chain reaction-based Aspergillus DNA detection for early therapy of invasive aspergillosis in high-risk hematological patients: a randomized controlled trial. Clin Infect Dis. 2015;60(3):405–14.

    CAS  PubMed  Google Scholar 

  120. Boch T, Spiess B, Cornely OA, Vehreschild JJ, Rath PM, Steinmann J, et al. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1,3-β-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: results of a prospective multicentre study. Clin Microbiol Infect. 2016;22(10):862–8.

    CAS  PubMed  Google Scholar 

  121. • Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect. 2018;24(Suppl 1):e1–e38 This is a comprehensive evidence-based guideline of the ESCMID for the diagnosis and management of invasive aspergillosis disease.

    PubMed  Google Scholar 

  122. Tuon FF. A systematic literature review on the diagnosis of invasive aspergillosis using polymerase chain reaction (PCR) from bronchoalveolar lavage clinical samples. Rev Iberoam Micol. 2007;24(2):89–94.

    PubMed  Google Scholar 

  123. Sun W, Wang K, Gao W, Su X, Qian Q, Lu X, et al. Evaluation of PCR on bronchoalveolar lavage fluid for diagnosis of invasive aspergillosis: a bivariate metaanalysis and systematic review. PLoS One. 2011;6(12):e28467.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Heng SC, Morrissey O, Chen SC, Thursky K, Manser RL, Nation RL, et al. Utility of bronchoalveolar lavage fluid galactomannan alone or in combination with PCR for the diagnosis of invasive aspergillosis in adult hematology patients: a systematic review and meta-analysis. Crit Rev Microbiol. 2015;41(1):124–34.

    CAS  PubMed  Google Scholar 

  125. Heng SC, Chen SC, Morrissey CO, Thursky K, Manser RL, De Silva HD, et al. Clinical utility of Aspergillus galactomannan and PCR in bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in patients with haematological malignancies. Diagn Microbiol Infect Dis. 2014;79(3):322–7.

    CAS  PubMed  Google Scholar 

  126. Reinwald M, Hummel M, Kovalevskaya E, Spiess B, Heinz WJ, Vehreschild JJ, et al. Therapy with antifungals decreases the diagnostic performance of PCR for diagnosing invasive aspergillosis in bronchoalveolar lavage samples of patients with haematological malignancies. J Antimicrob Chemother. 2012;67(9):2260–7.

    CAS  PubMed  Google Scholar 

  127. Fraczek MG, Kirwan MB, Moore CB, Morris J, Denning DW, Richardson MD. Volume dependency for culture of fungi from respiratory secretions and increased sensitivity of Aspergillus quantitative PCR. Mycoses. 2014;57(2):69–78.

    PubMed  Google Scholar 

  128. Perlin DS, Wiederhold NP. Culture-independent molecular methods for detection of antifungal resistance mechanisms and fungal identification. J Infect Dis. 2017;216(suppl_3):S458–S65.

    CAS  PubMed  Google Scholar 

  129. Postina P, Skladny J, Boch T, Cornely OA, Hamprecht A, Rath PM, et al. Comparison of two molecular assays for detection and characterization of. Front Microbiol. 2018;9:555.

    PubMed  PubMed Central  Google Scholar 

  130. Millon L, Larosa F, Lepiller Q, Legrand F, Rocchi S, Daguindau E, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis. 2013;56(10):e95–101.

    CAS  PubMed  Google Scholar 

  131. Legrand M, Gits-Muselli M, Boutin L, Garcia-Hermoso D, Maurel V, Soussi S, et al. Detection of circulating Mucorales DNA in critically ill burn patients: preliminary report of a screening strategy for early diagnosis and treatment. Clin Infect Dis. 2016;63(10):1312–7.

    CAS  PubMed  Google Scholar 

  132. • Millon L, Herbrecht R, Grenouillet F, Morio F, Alanio A, Letscher-Bru V, et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin Microbiol Infect. 2016;22(9):810.e1-.e8 This study evaluated a plasma Mucorales multi-species qPCR assay for the earlier diagnosis of invasive mucormycosis in patients at high-risk for mortality due to invasive fungal disease.

  133. Gade L, Hurst S, Balajee SA, Lockhart SR, Litvintseva AP. Detection of mucormycetes and other pathogenic fungi in formalin fixed paraffin embedded and fresh tissues using the extended region of 28S rDNA. Med Mycol. 2017;55(4):385–95.

    CAS  PubMed  Google Scholar 

  134. Hammond SP, Bialek R, Milner DA, Petschnigg EM, Baden LR, Marty FM. Molecular methods to improve diagnosis and identification of mucormycosis. J Clin Microbiol. 2011;49(6):2151–3.

    PubMed  PubMed Central  Google Scholar 

  135. Scherer E, Iriart X, Bellanger AP, Dupont D, Guitard J, Gabriel F, et al. Quantitative PCR (qPCR) detection of Mucorales DNA in bronchoalveolar lavage fluid to diagnose pulmonary mucormycosis. J Clin Microbiol. 2018;56(8):e00289–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Rickerts V, Khot PD, Myerson D, Ko DL, Lambrecht E, Fredricks DN. Comparison of quantitative real time PCR with Sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect Dis. 2011;11:202.

    PubMed  PubMed Central  Google Scholar 

  137. •• Gomez CA, Budvytiene I, Zemek AJ, Banaei N. Performance of targeted fungal sequencing for culture-independent diagnosis of invasive fungal disease. Clin Infect Dis. 2017;65(12):2035–41 This study evaluated the diagnostic performance of a pan-fungal PCR-sequencing assay in tissue and body fluids clinical samples with IFI, showing that diagnostic performance correlated with tissue-sample volume.

    PubMed  Google Scholar 

  138. Babouee B, Goldenberger D, Elzi L, Lardinois D, Sadowski-Cron C, Bubendorf L, et al. Prospective study of a panfungal PCR assay followed by sequencing, for the detection of fungal DNA in normally sterile specimens in a clinical setting: a complementary tool in the diagnosis of invasive fungal disease? Clin Microbiol Infect. 2013;19(8):E354–7.

    CAS  PubMed  Google Scholar 

  139. Lau A, Chen S, Sorrell T, Carter D, Malik R, Martin P, et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol. 2007;45(2):380–5.

    CAS  PubMed  Google Scholar 

  140. Hong DK, Blauwkamp TA, Kertesz M, Bercovici S, Truong C, Banaei N. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis. 2018;92(3):210–3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Gomez.

Ethics declarations

Conflict of Interest

Brittany A. Young and Carlos A. Gomez declare that they have no conflict of interest.

Kimberly E. Hanson has served as a consultant for BioFire and T2 Diagnostics and received honoraria for this work.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Transplant and Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, B.A., Hanson, K.E. & Gomez, C.A. Molecular Diagnostic Advances in Transplant Infectious Diseases. Curr Infect Dis Rep 21, 52 (2019). https://doi.org/10.1007/s11908-019-0704-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-019-0704-7

Keywords

Navigation