Skip to main content

Advertisement

Log in

Emerging Therapy in Hypertension

  • Antihypertensive Agents: Mechanisms of Drug Action (Michael E. Ernst, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Pharmacology remains the mainstay of treatment for hypertension across the globe. In what may seem like a well-trodden field, there are actually an exciting array of new pathways for the treatment of hypertension on the horizon. This review seeks to discuss the most recent research in ongoing areas of drug development in the field of hypertension.

Recent Findings

Novel areas of research in the field of hypertension pharmacology include central nervous system regulators, peripheral noradrenergic inhibitors, gastrointestinal sodium modulators, and a counter-regulatory arm of the renin-angiotensin-aldosterone system.

Summary

This review discusses these pathways in a look into the current status of emerging pharmacological therapies for hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

ACTH:

Adrenocorticotropic hormone

Ang:

Angiotensin

Ang I:

Angiotensin I

Ang II:

Angiotensin II

Ang III:

Angiotensin III

AngA:

Angiotensin A

ANP:

Atrial natriuretic peptide

APA:

Aminopeptidase A

ARB:

Angiotensin receptor blocker

ASI:

Aldosterone synthesis inhibitors

AT1:

Angiotensin receptor 1

AT2:

Angiotensin receptor 2

BNP:

Brain natriuretic peptide

C21:

Compound 21

CNS:

Central nervous system

DBH:

Dopamine-beta-hydroxylase

DIZE:

Diminazene aceturate

MrgD:

Mas-related G protein–coupled receptor D

NHE3:

Sodium/hydrogen exchanger 3

NO:

Nitric oxide

RAAS:

Renin-angiotensin aldosterone system

SBP:

Systolic blood pressure

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control. Circulation. 2016;134:441–50. https://doi.org/10.1161/CIRCULATIONAHA.115.018912.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hrenak J, Paulis L, Simko F. Angiotensin A/Alamandine/MrgD axis: another clue to understanding cardiovascular pathophysiology. Int J Mol Sci. 2016;17. https://doi.org/10.3390/ijms17071098.

    Article  Google Scholar 

  3. Soltani Hekmat A, Javanmardi K, Kouhpayeh A, Baharamali E, Farjam M. Differences in cardiovascular responses to Alamandine in two-kidney, one clip hypertensive and normotensive rats. Circ J. 2017;81:405–12.

    Article  Google Scholar 

  4. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21–38. https://doi.org/10.1016/j.phrs.2017.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stewart MH, Lavie CJ, Ventura HO (2018) Future pharmacological therapy in hypertension. 1–9.

    Article  Google Scholar 

  6. Patel SN, Ali Q, Samuel P, Steckelings UM, Hussain T. Angiotensin II type 2 receptor and receptor mas are colocalized and functionally interdependent in obese zucker rat kidney. Hypertension. 2017;70:831–8. https://doi.org/10.1161/HYPERTENSIONAHA.117.09679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Velkoska E, Patel SK, Burrell LM. Angiotensin converting enzyme 2 and diminazene: role in cardiovascular and blood pressure regulation. Curr Opin Nephrol Hypertens. 2016;25:384–95. https://doi.org/10.1097/MNH.0000000000000254.

    Article  CAS  PubMed  Google Scholar 

  8. De Maria MLA, Araújo LD, Fraga-silva RA, Pereira LAS, Heder J, Menezes GB, et al. Anti-hypertensive effects of diminazene aceturate : an angiotensin-converting enzyme 2 activator in rats. Protein Pept Lett. 2016;23:9–16.

    Article  Google Scholar 

  9. Huskova Z, Kopkan L, Cervenkova L, et al. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol. 2016;43:438–49.

    Article  CAS  Google Scholar 

  10. Macedo LM, Souza ÁPDS, De Maria MLDA, et al. Cardioprotective effects of diminazene aceturate in pressure-overloaded rat hearts. Life Sci. 2016;155:63–9. https://doi.org/10.1016/j.lfs.2016.04.036.

    Article  CAS  PubMed  Google Scholar 

  11. Kuriakose S, Muleme HM, Onyilagha C, Singh R, Jia P, Uzonna JE. Diminazene aceturate (Berenil) modulates the host cellular and inflammatory responses to Trypanosoma congolense infection. PLoS One. 2012;7. https://doi.org/10.1371/journal.pone.0048696.

    Article  CAS  Google Scholar 

  12. Hao Q, Dong X, Chen X, Yan F, Wang X, Shi H, et al. Angiotensin-converting enzyme 2 inhibits angiotensin II-induced abdominal aortic aneurysms in mice. Hum Gene Ther. 2018;29:1387–95. https://doi.org/10.1089/hum.2016.144.

    Article  CAS  Google Scholar 

  13. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52:783–92. https://doi.org/10.1007/s40262-013-0072-7.

    Article  CAS  PubMed  Google Scholar 

  14. Basu R, Poglitsch M, Yogasundaram H, Thomas J, Rowe BH, Oudit GY. Roles of angiotensin peptides and recombinant human ACE2 in heart failure. J Am Coll Cardiol. 2017. https://doi.org/10.1016/j.jacc.2016.11.064.

    Article  CAS  Google Scholar 

  15. Galandrin S, Denis C, Boularan C, et al. Renin – angiotensin system II type 1 receptor. Circulation. 2016. https://doi.org/10.1161/HYPERTENSIONAHA.116.08118.

    Article  CAS  Google Scholar 

  16. Papinska AM, Mordwinkin NM, Meeks CJ, Jadhav SS, Rodgers KE. Angiotensin-(1-7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br J Pharmacol. 2015;172:4443–53. https://doi.org/10.1111/bph.13225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin S, Pan H, Wu H, Ren D, Lu J. Role of the ACE2Ang(17) Mas axis in blood pressure regulation and its potential as an antihypertensive in functional foods (review). Mol Med Rep. 2017;16:4403–12.

    Article  CAS  Google Scholar 

  18. Arnold AC (2018) Blood pressure lowering effects of angiotensin-(1–7) in primary autonomic failure. https://www.clinicaltrials.gov/ct2/show/NCT02591173?term=NCT02591173&rank=1. NCT02591173. Accessed 24 Feb 2018.

  19. Biaggioni I (2018) Cardiovascular effects of angiotensin (1–7) in essential hypertension. ClinicalTrials.gov. NCT02245230. Accessed 24 Feb 2019.

  20. Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the endothelium. Hypertension. 2002;40:847–52. https://doi.org/10.1161/01.HYP.0000037979.53963.8F.

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira AJ, Jacoby BA, Araujo CAA, Macedo FAFF, Silva GAB, Almeida AP, et al. The nonpeptide angiotensin-(1-7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. AJP Hear Circ Physiol. 2006;292:H1113–9. https://doi.org/10.1152/ajpheart.00828.2006.

    Article  CAS  Google Scholar 

  22. Raffai G, Lombard JH. Angiotensin-(1-7) selectively induces relaxation and modulates endothelium-dependent dilation in mesenteric arteries of salt-fed rats. J Vasc Res. 2016;53:105–18. https://doi.org/10.1159/000448714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma Y, Huang H, Jiang J, Wu L, Lin C, Tang A, et al. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress. Biochem Biophys Res Commun. 2016;474:621–5.

    Article  CAS  Google Scholar 

  24. Skiba DS, Nosalski R, Mikolajczyk TP, et al. Anti-atherosclerotic effect of the angiotensin 1–7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque in fl ammation in early atherosclerosis. Br J Pharmacol. 2017. https://doi.org/10.1111/bph.13685.

    Article  CAS  Google Scholar 

  25. Qaradakhi T, Apostolopoulos V, Zulli A. Angiotensin (1-7) and Alamandine: similarities and differences. Pharmacol Res. 2016;111:820–6.

    Article  CAS  Google Scholar 

  26. Soares ER, Barbosa CM, Campagnole-Santos MJ, Santos RAS, Alzamora AC. Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1–7), into caudal ventrolateral medulla of 2K1C hypertensive rats. Peptides. 2017;96:67–75. https://doi.org/10.1016/j.peptides.2017.09.005.

    Article  CAS  PubMed  Google Scholar 

  27. de Jesus ICG, Scalzo S, Alves F, Marques K, Rocha-Resende C, Bader M, et al. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am J Physiol Cell Physiol. 2018;314:C702–11.

    Article  Google Scholar 

  28. Park BM, Phuong HTA, Yu L, Kim SH. Alamandine protects the heart against reperfusion injury via the MrgD receptor. Circ J. 2018;82:2584–93.

    Article  Google Scholar 

  29. Liu C, Yang CX, Chen XR, Liu BX, Li Y, Wang XZ, et al. Alamandine attenuates hypertension and cardiac hypertrophy in hypertensive rats. Amino Acids. 2018;50:1071–81.

    Article  CAS  Google Scholar 

  30. Whitebread S, Mele M, Kamber B, de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989;163:284–91. https://doi.org/10.1016/0006-291X(89)92133-5.

    Article  CAS  PubMed  Google Scholar 

  31. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, et al. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995;377:748–50. https://doi.org/10.1038/377748a0.

    Article  CAS  PubMed  Google Scholar 

  32. Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest. 1999;104:925–35. https://doi.org/10.1172/JCI7886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henrion D, Kubis N, Lévy BI. Physiological and pathophysiological functions of the AT2subtype receptor of angiotensin II from large arteries to the microcirculation. Hypertension. 2001;38:1150–7. https://doi.org/10.1161/hy1101.096109.

    Article  CAS  PubMed  Google Scholar 

  34. Lo M, Liu KL, Lantelme P, Sassard J. Subtype 2 of angiotensin II receptors controls pressure-natriuresis in rats. J Clin Invest. 1995;95:1394–7. https://doi.org/10.1172/JCI117792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whitebread SE, Taylor V, Bottari SP, Kamber B, de Gasparo M. Radioiodinated CGP 42111A: A novel high affinity and highly selective ligand for the characterization of angiotensin AT2receptors. Biochem Biophys Res Commun. 1991;181:1365–71. https://doi.org/10.1016/0006-291X(91)92089-3.

    Article  CAS  PubMed  Google Scholar 

  36. Wan Y, Wallinder C, Plouffe B, Beaudry H, Mahalingam AK, Wu X, et al. Design, synthesis, and biological evaluation, of the first selective nonpeptide AT2 receptor agonist. J Med Chem. 2004;47:5995–6008. https://doi.org/10.1021/jm049715t.

    Article  CAS  PubMed  Google Scholar 

  37. Padia SH, Carey RM. AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers Arch Eur J Physiol. 2013;465:99–110. https://doi.org/10.1007/s00424-012-1146-3.

    Article  CAS  Google Scholar 

  38. Kemp BA, Howell NL, Keller SR, Gildea JJ, Padia SH, Carey RM. AT2 receptor activation prevents sodium retention and reduces blood pressure in angiotensin II-dependent hypertension. Circ Res. 2016;119:532–43. https://doi.org/10.1161/CIRCRESAHA.116.308384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lange C, Sommerfeld M, Namsolleck P, Kintscher U, Unger T, Kaschina E. AT2R (angiotensin AT2 receptor) agonist, compound 21, prevents abdominal aortic aneurysm progression in the rat. Hypertension. 2018. https://doi.org/10.1161/HYPERTENSIONAHA.118.11168.

  40. Chow BSM, Koulis C, Krishnaswamy P, Steckelings UM, Unger T, Cooper ME, et al. The angiotensin II type 2 receptor agonist compound 21 is protective in experimental diabetes-associated atherosclerosis. Diabetologia 2016;59(8):1778–90. https://doi.org/10.1007/s00125-016-3977-5.

    Article  CAS  Google Scholar 

  41. Castoldi G, di Gioia CRT, Roma F, Carletti R, Manzoni G, Stella A, et al. Activation of angiotensin type 2 (AT2) receptors prevents myocardial hypertrophy in Zucker diabetic fatty rats. Acta Diabetol. 2018. https://doi.org/10.1007/s00592-018-1220-1.

    Article  Google Scholar 

  42. BOLTE E, VERDY M, MARC-AURELE J, BROUILLET J, BEAUREGARD P, GENEST J. Studies on new diuretic compounds: spirolactone and chlorothiazide. Can Med Assoc J. 1958;79:881–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Williams B, Macdonald TM, Morant S, Webb DJ, Sever P, Mcinnes G, et al. British Hypertension Society's PATHWAY Studies Group. Spironolactone versus placebo , bisoprolol , and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised , double-blind, crossover trial. Lancet. 2015;386(10008):2059–2068. https://doi.org/10.1016/S0140-6736(15)00257-3.

    Article  CAS  Google Scholar 

  44. Amar L, Azizi M, Watson C. Aldosterone synthase inhibition with LCI699 A proof-of-concept study in patients with primary aldosteronism. Hypertension. 2010. https://doi.org/10.1161/HYPERTENSIONAHA.110.157271.

    Article  CAS  Google Scholar 

  45. Calhoun DA, White WB, Krum H, Guo W, Bermann G, Trapani A, et al. Effects of a novel aldosterone synthase inhibitor for phase 2 trial. Circulation. 2011. https://doi.org/10.1161/CIRCULATIONAHA.111.029892.

    Article  CAS  Google Scholar 

  46. Karns AD, Bral JM, Hartman D, Peppard T, Schumacher C. Study of aldosterone synthase inhibition as an add-on therapy in resistant hypertension. J Clin Hypertens (Greenwich). 2013. https://doi.org/10.1111/jch.12051.

    Article  Google Scholar 

  47. Weldon SM, Cerny MA, Gueneva-boucheva K, Cogan D, Guo X, Moss N et al. Selectivity of BI 689648, a Novel, Highly Selective Aldosterone Synthase Inhibitor: Comparison with FAD286 and LCI699 in Nonhuman Primates. J Pharmacol Exp Ther. 2016;359(1):142–150. https://doi.org/10.1124/jpet.116.236463.

    Article  CAS  Google Scholar 

  48. •• Sloan-lancaster J, Raddad E, Flynt A, Jin Y, Voelker J, Miller JW. LY3045697 : Results from two randomized clinical trials of a novel inhibitor of aldosterone synthase. J Renin Angiotensin Aldosterone Syst. 2017. https://doi.org/10.1177/1470320317717883 Phase I trial of a novel selective inhibitor of the enzyme CYP11B2, aldosterone synthase. Previous drugs in this class failed due to homology with cortisol synthase, but new selective inhibitors hold much promise.

    Article  Google Scholar 

  49. • Cypb S, Bogman K, Schwab D, et al. Aldosterone synthase inhibitor preclinical and early clinical profile of a highly selective and potent oral inhibitor of aldosterone. Hypertension. 2016. https://doi.org/10.1161/HYPERTENSIONAHA.116.07716 Another phase I trial of a novel selective CYP11B2 inhibitor, a new class of medications.

    Article  CAS  Google Scholar 

  50. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453–2463. https://doi.org/10.1093/eurheartj/eht187.

    Article  CAS  Google Scholar 

  51. • Sato N, Ajioka M, Yamada T, et al. A randomized controlled study of finerenone vs. eplerenone in japanese patients with worsening chronic heart failure and diabetes and/or chronic kidney disease. Circ J. 2016. https://doi.org/10.1253/circj.CJ-16-0122. New mineralcorticoid antagonist with specificity for cardiac over renal tissue, designed for vasoactive effects without potential renal injury. Finerenone is showing promise in heart failure trials but a dose depdent blood pressure reduction has also been noted.

    Article  CAS  Google Scholar 

  52. Filippatos G, Anker SD, Böhm M, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016. https://doi.org/10.1093/eurheartj/ehw132.

    Article  CAS  Google Scholar 

  53. Macdonald PS. Combined angiotensin receptor/neprilysin inhibitors: a review of the new paradigm in the management of chronic heart failure. Clin Ther. 2015;37:2199–205. https://doi.org/10.1016/j.clinthera.2015.08.013.

    Article  CAS  PubMed  Google Scholar 

  54. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  55. Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375:1255–66. https://doi.org/10.1016/S0140-6736(09)61966-8.

    Article  CAS  PubMed  Google Scholar 

  56. Kario K, Sun N, Chiang FT, Supasyndh O, Baek SH, Inubushi-Molessa A, et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension. 2014;63:698–705. https://doi.org/10.1161/HYPERTENSIONAHA.113.02002.

    Article  CAS  PubMed  Google Scholar 

  57. Supasyndh O, Sun N, Kario K, Hafeez K, Zhang J. Long-term (52-week) safety and efficacy of sacubitril/valsartan in Asian patients with hypertension. Hypertens Res. 2017;40:472–6.

    Article  CAS  Google Scholar 

  58. Kario K, Tamaki Y, Okino N, Gotou H, Zhu M, Zhang J. LCZ696, a first-in-class angiotensin receptor-neprilysin inhibitor: the first clinical experience in patients with severe hypertension. J Clin Hypertens. 2016;18:308–14. https://doi.org/10.1111/jch.12667.

    Article  CAS  Google Scholar 

  59. Izzo JLJ, Zappe DH, Jia Y, Hafeez K, Zhang J. Efficacy and safety of crystalline valsartan/sacubitril (LCZ696) compared with placebo and combinations of free valsartan and sacubitril in patients with systolic hypertension: the RATIO study. J Cardiovasc Pharmacol. 2017;69:374–81.

    Article  CAS  Google Scholar 

  60. Schmieder RE, Wagner F, Mayr M, Delles C, Ott C, Keicher C, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38:3308–17.

    Article  CAS  Google Scholar 

  61. Igreja B, Pires NM, Bonifácio MJ, Loureiro AI, Fernandes-Lopes C, Wright LC, et al. Blood pressure-decreasing effect of etamicastat alone and in combination with antihypertensive drugs in the spontaneously hypertensive rat. Hypertens Res. 2015;38:30–8. https://doi.org/10.1038/hr.2014.143.

    Article  CAS  PubMed  Google Scholar 

  62. Igreja B, Wright LC, Soares-Da-Silva P. Sustained high blood pressure reduction with etamicastat, a peripheral selective dopamine β-hydroxylase inhibitor. J Am Soc Hypertens. 2016;10:207–16. https://doi.org/10.1016/j.jash.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

  63. Pires NM, Igreja B, Moura E, Wright LC, Serrão MP, Soares-da-Silva P. Blood pressure decrease in spontaneously hypertensive rats following renal denervation or dopamine β-hydroxylase inhibition with etamicastat. Hypertens Res. 2015;38:605–12. https://doi.org/10.1038/hr.2015.50.

    Article  CAS  PubMed  Google Scholar 

  64. •• Almeida L, Nunes T, Costa R, Rocha JF, Vaz-da-Silva M, Soares-da-Silva P. Etamicastat, a novel dopamine β-hydroxylase inhibitor: tolerability, pharmacokinetics, and pharmacodynamics in patients with hypertension. Clin Ther. 2013. https://doi.org/10.1016/j.clinthera.2013.10.012 Phase I trial of a novel class of medications inhibiting the peripheral conversion of dopamine to noradrenaline.

    Article  CAS  Google Scholar 

  65. • Igreja B, Pires NM, Wright LC, Soares-da-Silva P. Effects of zamicastat treatment in a genetic model of salt-sensitive hypertension and heart failure. Eur J Pharmacol. 2019. https://doi.org/10.1016/j.ejphar.2018.10.030 Preclinical study of the newest iteration of dopamine B-hydoxylase inhibitors. Previous versions were well tolerated in phase I trials and represent a new class of medications for the treatment of hypertension.

    Article  CAS  Google Scholar 

  66. Bial-Portela, C S.A. Safety, tolerability, pharmacokinetics and pharmacodynamics of BIA 5-1058. In: ClinicalTrials.gov. 2018. https://clinicaltrials.gov/ct2/show/NCT03708146. Accessed 24 Feb 2019.

  67. Tani S, Kushiro T, Takahashi A, Kawamata H, Ohkubo K, Nagao K, et al. Antihypertensive efficacy of the direct renin inhibitor Aliskiren as add-on therapy in patients with poorly controlled hypertension. Intern Med. 2016;55:427–35.

    Article  CAS  Google Scholar 

  68. McMurray JJV, Krum H, Abraham WT, et al. Aliskiren, Enalapril, or Aliskiren and Enalapril in heart failure. N Engl J Med. 2016;374:1521–32. https://doi.org/10.1056/NEJMoa1514859.

    Article  CAS  PubMed  Google Scholar 

  69. Parving H-H, Brenner BM, McMurray JJV, et al. Cardiorenal end points in a trial of Aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13. https://doi.org/10.1056/NEJMoa1208799.

    Article  CAS  PubMed  Google Scholar 

  70. Zheng SL, Roddick AJ, Ayis S. Effects of aliskiren on mortality, cardiovascular outcomes and adverse events in patients with diabetes and cardiovascular disease or risk: a systematic review and meta-analysis of 13,395 patients. Diab Vasc Dis Res. 2017. https://doi.org/10.1177/1479164117715854.

    Article  CAS  Google Scholar 

  71. Fu S, Wen X, Han F, Long Y, Xu G. Aliskiren therapy in hypertension and cardiovascular disease : a systematic review and a meta-analysis. Oncotarget. 2017;8:89364–74.

    PubMed  PubMed Central  Google Scholar 

  72. Kristensen SL, Mogensen UM, Tarnesby G, et al. Aliskiren alone or in combination with enalapril vs. enalapril among patients with chronic heart failure with and without diabetes: a subgroup analysis from the ATMOSPHERE trial. Eur J Heart Fail. 2018. https://doi.org/10.1002/ejhf.896.

    Article  Google Scholar 

  73. Jia Y, Jia G. Role of intestinal Na + / H + exchanger inhibition in the prevention of cardiovascular and kidney disease. Ann Transl Med. 2015;3:2–4.

    Google Scholar 

  74. Spencer AG, Labonte ED, Rosenbaum DP, et al. Intestinal inhibition of the Na + / H + exchanger 3 prevents cardiorenal damage in rats and inhibits Na + uptake in humans. Sci Transl Med. 2014;6:1–12.

    Article  Google Scholar 

  75. Rosenbaum DP. Pharmacodynamics, safety, and tolerability of the NHE3 inhibitor tenapanor: two trials in healthy volunteers. Clin Drug Investig. 2018;38:341–51. https://doi.org/10.1007/s40261-017-0614-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ardelyx. A 26-week study to evaluate the efficacy and safety of tenapanor in IBS-C (T3MPO-2). 2018. https://www.clinicaltrials.gov/ct2/show/NCT02686138?term=A+26-week+study+to+evaluate+the+efficacy+and+safety+of++tenapanor+in+IBS-C+%28T3MPO-2%29.&rank=1. NCT02686138. Accessed 24 Feb 2018

  77. Linz B, Hohl M, Reil JC, Böhm M, Linz D. Inhibition of NHE3-mediated sodium absorption in the gut reduced cardiac end-organ damage without deteriorating renal function in obese spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2016;67:225–31. https://doi.org/10.1097/FJC.0000000000000336.

    Article  CAS  PubMed  Google Scholar 

  78. Wright JW, Mizutani S, Harding JW. Focus on brain angiotensin III and aminopeptidase A in the control of hypertension. 2012. doi: https://doi.org/10.1155/2012/124758.

    Article  Google Scholar 

  79. Fournie-Zaluski M-C, Fassot C, Valentin B, Djordjijevic D, Reaux-Le Goazigo A, Corvol P, et al. Brain renin-angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci. 2004;101:7775–80. https://doi.org/10.1073/pnas.0402312101.

    Article  CAS  PubMed  Google Scholar 

  80. Marc Y, Gao J, Balavoine F, Michaud A, Roques BP, Llorens-cortes C. Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats. Hypertension. 2012. https://doi.org/10.1161/HYPERTENSIONAHA.112.190942.

    Article  CAS  Google Scholar 

  81. •• Balavoine F, Azizi M, Bergerot D, De Mota N, Patouret R, Roques BP, et al. Randomised, double-blind, placebo-controlled, dose-escalating phase i study of qgc001, a centrally acting aminopeptidase a inhibitor prodrug. Clin Pharmacokinet. 2014. https://doi.org/10.1007/s40262-013-0125-y Sucessful phase I trial of a centrally acting inhibitor of aminopeptidase A and thereby the production of angiotensin III. This demonstrates the role of the renin-angiotensin aldosterone cacasde within the central nervous system.

    Article  Google Scholar 

  82. SA QG. Phase IIa study of the product QGC001 compared with placebo in patients with essential hypertension (2QG1). ClinicalTrials.gov. 2016. Accessed 24 Feb 2019.

  83. Marc Y, Hmazzou R, Balavoine F, Flahault A, Llorens-Cortes C. Central antihypertensive effects of chronic treatment with RB150: an orally active aminopeptidase A inhibitor in deoxycorticosterone acetate-salt rats. J Hypertens. 2018;36:641–50. https://doi.org/10.1097/HJH.0000000000001563.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merrill H. Stewart.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Antihypertensive Agents: Mechanisms of Drug Action

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, M.H., Lavie, C.J. & Ventura, H.O. Emerging Therapy in Hypertension. Curr Hypertens Rep 21, 23 (2019). https://doi.org/10.1007/s11906-019-0923-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-019-0923-1

Keywords

Navigation