Skip to main content
Log in

Pulse Pressure, Arterial Stiffness, and End-Organ Damage

  • The Therapeutic Trials (G Mancia and TD Giles, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Whereas larger arteries participate in the dampening of blood pressure (BP) oscillations resulting from intermittent ventricular ejection, smaller arteries steadily deliver an adequate supply of blood from the heart to the peripheral organs. Numerous active mechanisms are involved in this process. Cyclic stress acts differently from steady stress, inducing stronger and stiffer material of the vessel wall than under static conditions. Cyclic strain participates in the phenotypic plasticity of smooth muscle cells, initiates transduction mechanisms and induces the transcriptional profile of mechanically induced genes. Finally, the autoregulatory mechanism protecting the brain, heart and kidney from cardiovascular (CV) damage differ markedly according to their localization. Whereas the heart is dependent on pulsatile forces, owing to the diastolic perfusion of coronary arteries, the brain and the kidney are rather influenced by steady mechanical forces. For the kidney, the transmission of pulsatile pressure may greatly contribute to glomerular sclerosis in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance •• Of major importance

  1. Nichols WW, O'Rourke MF. McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles, 4th ed. London: Edward Arnold; 2006. pp. 49–94. 193–233, 339–402, 435–502.

    Google Scholar 

  2. Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107:2864–9.

    Article  PubMed  Google Scholar 

  3. Safar ME. Systolic blood pressure, pulse pressure and arterial stiffness as cardiovascular risk factors. Curr Opin Nephrol Hypertens. 2001;10:257–61.

    Article  PubMed  CAS  Google Scholar 

  4. Kung CF, Luscher TF. Different mechanisms of endothelial dysfunction with aging and hypertension in rat aorta. Hypertension. 1995;25:194–200.

    Article  PubMed  CAS  Google Scholar 

  5. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70:921–61.

    PubMed  CAS  Google Scholar 

  6. D’Angelo G, Meininger GA. Transduction mechanisms involved in the regulation of myogenic activity. Hypertension. 1994;23:1096–105.

    Article  PubMed  Google Scholar 

  7. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:735–40.

    Article  PubMed  CAS  Google Scholar 

  8. Matrougui K, Schiavi P, Guez D, Henrion D. High sodium intake decreases pressure-induced (myogenic) tone and flow-induced dilation in resistance arteries from hypertensive rats. Hypertension. 1998;32:176–9.

    Article  PubMed  CAS  Google Scholar 

  9. Schofield I, Malik R, Izzard A, et al. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation. 2002;106:3037–43.

    Article  PubMed  Google Scholar 

  10. Safar ME. Carotid artery stiffness with applications to cardiovascular pharmacology. Gen Pharmacol. 1996;27:1293–302.

    Article  PubMed  CAS  Google Scholar 

  11. Glagov S. Hemodynamic risk factors: mechanical stress, mural architecture, medial nutrition and vulnearbility of arteries to atherosclerosis. In: Wissler RW, Geer JC, eds. The pathogenesis of atherosclerosis. Baltimoire: Williams and Wilkins; 1972. p. 164–99.

    Google Scholar 

  12. Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J Biomech. 2003;36:631–43.

    Article  PubMed  Google Scholar 

  13. Hishikawa K, Luscher TF. Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. Circulation. 1997;96:3610–6.

    Article  PubMed  CAS  Google Scholar 

  14. Bakker EN, Sorop O, Spaan JA, VanBavel E. Remodeling of resistance arteries in organoid culture is modulated by pressure and pressure pulsation and depends on vasomotion. Am J Physiol Heart Circ Physiol. 2004;286:H2052–6.

    Article  PubMed  CAS  Google Scholar 

  15. Williams B. Mechanical influences on vascular smooth muscle cell function. J Hypertens. 1998;16:1921–9.

    Article  PubMed  CAS  Google Scholar 

  16. Bardy N, Karillon GJ, Merval R, et al. Differential effects of pressure and flow on DNA and protein synthesis and on fibronectin expression by arteries in a novel organ culture system. Circ Res. 1995;77:684–94.

    Article  PubMed  CAS  Google Scholar 

  17. Chien S, Li S, Shyy YJ. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension. 1998;31:162–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hishikawa K, Oemar BS, Yang Z, Luscher TF. Pulsatile stretch stimulates superoxide production and activates nuclear factor-kappa B in human coronary smooth muscle. Circ Res. 1997;81:797–803.

    Article  PubMed  CAS  Google Scholar 

  19. Tharaux PL, Chatziantoniou C, Fakhouri F, Dussaule JC. Angiotensin II activates collagen I gene through a mechanism involving the MAP/ER kinase pathway. Hypertension. 2000;36:330–6.

    Article  PubMed  CAS  Google Scholar 

  20. Lee RT. Functional genomics and cardiovascular drug discovery. Circulation. 2001;104:1441–6.

    Article  PubMed  CAS  Google Scholar 

  21. Baumbach GL, Heistad DD. Regional, segmental, and temporal heterogeneity of cerebral vascular autoregulation. Ann Biomed Eng. 1985;13:303–10.

    Article  PubMed  CAS  Google Scholar 

  22. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.

    PubMed  CAS  Google Scholar 

  23. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66:8–17.

    Article  PubMed  CAS  Google Scholar 

  24. •• Kotliar KE, Baumann M, Vilser W, Lanzl IM. Pulse wave velocity in retinal arteries of healthy volunteers. Br J Ophthalmol. 2011;95:675–9. This paper discusses the first papers on microcirculation and arterial stiffness.

    Article  PubMed  Google Scholar 

  25. •• Katsi V, Vlachopoulos C, Souretis G, et al. Association between retinal microcirculation and aortic stiffness in hypertensive patients. Int J Cardiol. 2011, Jan 20. [Epub ahead of print]. This is an important paper on retinal microcirculation and arterial stiffness.

  26. •• Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet 2010;375:906–15. This is a major paper on blood pressure variability.

    Article  PubMed  CAS  Google Scholar 

  27. • Kim YS, Davis SC, Truijen J, et al. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients. Hypertension 2011;57:738–45. Cerebral blood flow is studied in diabetes mellitus.

    Article  PubMed  CAS  Google Scholar 

  28. Hoffman JI. A critical view of coronary reserve. Circulation. 1987;75:I6–11.

    PubMed  CAS  Google Scholar 

  29. Kaul S, Ito H. Microvasculature in acute myocardial ischemia: part I: evolving concepts in pathophysiology, diagnosis, and treatment. Circulation. 2004;109:146–9.

    Article  PubMed  Google Scholar 

  30. Camici PG, Rimoldi O. Clinical investigation of the microcirculation in patients with cardiovascular disease, in Microcirculation and cardiovascular disease. In: Struijker Boudier HA, Ambrosio G, editors. Lippincot Williams & Wilkins; 2000 p. 127–142.

  31. Mitchell GF. Increased aortic stiffness: an unfavorable cardiorenal connection. Hypertension. 2004;43:151–3.

    Article  PubMed  CAS  Google Scholar 

  32. Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension. 2004;44:595–601.

    Article  PubMed  CAS  Google Scholar 

  33. Loutzenhiser R, Bidani A, Chilton L. Renal myogenic response: kinetic attributes and physiological role. Circ Res. 2002;90:1316–24.

    Article  PubMed  CAS  Google Scholar 

  34. Verhave JC, Fesler P, du Cailar G, et al. Elevated pulse pressure is associated with low renal function in elderly patients with isolated systolic hypertension. Hypertension. 2005;45:586–91.

    Article  PubMed  CAS  Google Scholar 

  35. Schillaci G, Pirro M, Mannarino MR, et al. Relation between renal function within the normal range and central and peripheral arterial stiffness in hypertension. Hypertension. 2006;48:616–21.

    Article  PubMed  CAS  Google Scholar 

  36. Fesler P, Safar ME, du Cailar G, et al. Pulse pressure is an independent determinant of renal function decline during treatment of essential hypertension. J Hypertens. 2007;25:1915–20.

    Article  PubMed  CAS  Google Scholar 

  37. Fesler P, Du Cailar G, Ribstein J, Mimran A. Left ventricular remodeling and renal function in never-treated essential hypertension. J Am Soc Nephrol. 2003;14:881–7.

    Article  PubMed  Google Scholar 

  38. Young JH, Klag MJ, Muntner P, et al. Blood pressure and decline in kidney function: findings from the Systolic Hypertension in the Elderly Program (SHEP). J Am Soc Nephrol. 2002;13:2776–82.

    Article  PubMed  CAS  Google Scholar 

  39. Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334:13–8.

    Article  PubMed  CAS  Google Scholar 

  40. Cortes P, Zhao X, Riser BL, Narins RG. Regulation of glomerular volume in normal and partially nephrectomized rats. Am J Physiol. 1996;270:F356–70.

    PubMed  CAS  Google Scholar 

  41. Pedrinelli R, Dell’Omo G, Penno G, et al. Microalbuminuria and pulse pressure in hypertensive and atherosclerotic men. Hypertension. 2000;35:48–54.

    Article  PubMed  CAS  Google Scholar 

  42. Safar ME, London GM, Plante GE. Arterial stiffness and kidney function. Hypertension. 2004;43:163–8.

    Article  PubMed  CAS  Google Scholar 

  43. Benetos A, Adamopoulos C, Bureau JM, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002;105:1202–7.

    Article  PubMed  Google Scholar 

  44. Drumond MC, Deen WM. Analysis of pulsatile pressures and flows in glomerular filtration. Am J Physiol. 1991;261:F409–419.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed in relation with INSERM and GPH-CV (Groupe de Pharmacologie et d’Hémodynamique Cardiovasculaire), Paris. We thank Dr. Anne Safar for pertinent discussions.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel E Safar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safar, M.E., Nilsson, P.M., Blacher, J. et al. Pulse Pressure, Arterial Stiffness, and End-Organ Damage. Curr Hypertens Rep 14, 339–344 (2012). https://doi.org/10.1007/s11906-012-0272-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-012-0272-9

Keywords

Navigation