Skip to main content

Advertisement

Log in

HIV Compartmentalization in the CNS and Its Impact in Treatment Outcomes and Cure Strategies

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review focuses on the cerebrospinal fluid (CSF) findings in connection to the central nervous system (CNS) reservoir in treatment-naïve and virally suppressed PLWH, followed by the findings in CSF HIV-1 escape and analytical treatment interruption studies.

Recent Findings

Compared to chronic infection, initiating antiretroviral therapy (ART) during acute HIV-1 infection results in more homogeneous longitudinal benefits in the CNS. Viral variants in CSF HIV-1 escape are independently linked to infected cells from the systemic reservoir and in the CNS, highlighting the phenomenon as a consequence of different mechanisms. HIV-infected cells persist in CSF in nearly half of the individuals on stable ART and are associated with worse neurocognitive performance.

Summary

Future studies should probe into the origin of the HIV-infected cells in the CSF. Examining the capacity for viral replication would provide new insight into the CNS reservoir and identify strategies to eradicate it or compensate for the insufficiency of ART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol. 2021;51:101438. https://doi.org/10.1016/j.smim.2020.101438.

    Article  CAS  PubMed  Google Scholar 

  2. Wong JK, Yukl SA. Tissue reservoirs of HIV. Curr Opin HIV AIDS. 2016;11(4):362–70. https://doi.org/10.1097/COH.0000000000000293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB, et al. HIV DNA is frequently present within pathologic tissues evaluated at autopsy from combined antiretroviral therapy-treated patients with undetectable viral loads. J Virol. 2016;90(20):8968–83. https://doi.org/10.1128/JVI.00674-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, De Oliveira MF, et al. HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest. 2020;130(4):1699–712. https://doi.org/10.1172/JCI134815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Croese T, Castellani G, Schwartz M. Immune cell compartmentalization for brain surveillance and protection. Nat Immunol. 2021;22(9):1083–92. https://doi.org/10.1038/s41590-021-00994-2.

    Article  CAS  PubMed  Google Scholar 

  6. Winston A, Antinori A, Cinque P, Fox HS, Gisslen M, Henrich TJ, et al. Defining cerebrospinal fluid HIV RNA escape: editorial review AIDS. AIDS. 2019;33(Suppl 2):S107–11. https://doi.org/10.1097/QAD.0000000000002252.

    Article  CAS  PubMed  Google Scholar 

  7. Joseph J, Cinque P, Colosi D, Dravid A, Ene L, Fox H, et al. Highlights of the global HIV-1 CSF escape consortium meeting, 9 June 2016, Bethesda, MD, USA. J Virus Erad. 2016;2(4):243–50.

    Article  Google Scholar 

  8. Perez-Valero I, Ellis R, Heaton R, Deutsch R, Franklin D, Clifford DB, et al. Cerebrospinal fluid viral escape in aviremic HIV-infected patients receiving antiretroviral therapy: prevalence, risk factors and neurocognitive effects. AIDS. 2019;33(3):475–81. https://doi.org/10.1097/QAD.0000000000002074.

    Article  CAS  PubMed  Google Scholar 

  9. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99. https://doi.org/10.1212/01.WNL.0000287431.88658.8b.

    Article  CAS  PubMed  Google Scholar 

  10. •• Spudich S, Robertson KR, Bosch RJ, Gandhi RT, Cyktor JC, Mar H, et al. Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J Clin Invest. 2019;129(8):3339–46. https://doi.org/10.1172/JCI127413. (This work describes an unexpectedly high frequency of HIV-infected cells in the cerebrospinal fluid despite stable suppressive antiretroviral therapy.)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, et al. Microglial cells: the main HIV-1 reservoir in the brain. Front Cell Infect Microbiol. 2019;9:362. https://doi.org/10.3389/fcimb.2019.00362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Al-Harti L, Joseph J, Nath A. Astrocytes as an HIV CNS reservoir: highlights and reflections of an NIMH-sponsored symposium. J Neurovirol. 2018;24(6):665–9. https://doi.org/10.1007/s13365-018-0691-8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chan P, Patel P, Hellmuth J, Colby DJ, Kroon E, Sacdalan C, et al. Distribution of HIV RNA in CSF and blood is linked to CD4/CD8 ratio during acute HIV. J Infect Dis. 2018. https://doi.org/10.1093/infdis/jiy260.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tovanabutra S, Sirijatuphat R, Pham PT, Bonar L, Harbolick EA, Bose M, et al. Deep sequencing reveals central nervous system compartmentalization in multiple transmitted/founder virus acute HIV-1 infection. Cells. 2019;8(8). https://doi.org/10.3390/cells8080902

  15. Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalization and clonal amplification of HIV-1 variants in the cerebrospinal fluid during primary infection. J Virol. 2010;84(5):2395–407. https://doi.org/10.1128/JVI.01863-09.

    Article  CAS  PubMed  Google Scholar 

  16. Gega A, Kozal MJ, Chiarella J, Lee E, Peterson J, Hecht FM, et al. Deep sequencing of HIV-1 variants from paired plasma and cerebrospinal fluid during primary HIV infection. J Virus Erad. 2015;1(4):264–8.

    Article  Google Scholar 

  17. Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 2015;11(3):e1004720. https://doi.org/10.1371/journal.ppat.1004720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 2011;7(10):e1002286. https://doi.org/10.1371/journal.ppat.1002286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ulfhammer G, Eden A, Antinori A, Brew BJ, Calcagno A, Cinque P, et al. Cerebrospinal fluid viral load across the spectrum of untreated HIV-1 infection: a cross-sectional multi-center study. Clin Infect Dis. 2021. https://doi.org/10.1093/cid/ciab943.

    Article  PubMed  Google Scholar 

  20. •• Gisslen M, Keating SM, Spudich S, Arechiga V, Stephenson S, Zetterberg H, et al. Compartmentalization of cerebrospinal fluid inflammation across the spectrum of untreated HIV-1 infection, central nervous system injury and viral suppression. PLoS One. 2021;16(5):e0250987. https://doi.org/10.1371/journal.pone.0250987. (This work examines the evolution of the elevation of immune activation markers in the CSF across different stages of HIV infection.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Group ISS, Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015;373(9):795–807. https://doi.org/10.1056/NEJMoa1506816.

    Article  CAS  Google Scholar 

  22. Wright EJ, Grund B, Robertson KR, Cysique L, Brew BJ, Collins GL, et al. No neurocognitive advantage for immediate antiretroviral treatment in adults with greater than 500 CD4+ T-cell counts. AIDS. 2018;32(8):985–97. https://doi.org/10.1097/QAD.0000000000001778.

    Article  CAS  PubMed  Google Scholar 

  23. Peluso MJ, Valcour V, Ananworanich J, Sithinamsuwan P, Chalermchai T, Fletcher JL, et al. Absence of cerebrospinal fluid signs of neuronal injury before and after immediate antiretroviral therapy in acute HIV infection. J Infect Dis. 2015;212(11):1759–67. https://doi.org/10.1093/infdis/jiv296.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ulfhammer G, Eden A, Mellgren A, Fuchs D, Zetterberg H, Hagberg L, et al. Persistent central nervous system immune activation following more than 10 years of effective HIV antiretroviral treatment. AIDS. 2018;32(15):2171–8. https://doi.org/10.1097/QAD.0000000000001950.

    Article  CAS  PubMed  Google Scholar 

  25. Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD, et al. Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS. 2014;28(1):67–72. https://doi.org/10.1097/01.aids.0000432467.54003.f7.

    Article  CAS  PubMed  Google Scholar 

  26. Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, et al. Neuroinflammation in treated HIV-positive individuals: a TSPO PET study. Neurology. 2016;86(15):1425–32. https://doi.org/10.1212/WNL.0000000000002485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, et al. Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS. 2018;32(12):1661–7. https://doi.org/10.1097/QAD.0000000000001858.

    Article  PubMed  Google Scholar 

  28. Evering TH, Applebaum A, La Mar M, Garmon D, Dorfman D, Markowitz M. Rates of non-confounded HIV-associated neurocognitive disorders in men initiating combination antiretroviral therapy during primary infection. AIDS. 2016;30(2):203–10. https://doi.org/10.1097/QAD.0000000000000892.

    Article  CAS  PubMed  Google Scholar 

  29. Chan P, Kerr SJ, Kroon E, Colby D, Sacdalan C, Hellmuth J, et al. Cognitive trajectories after treatment in acute HIV infection. AIDS. 2021;35(6):883–8. https://doi.org/10.1097/QAD.0000000000002831.

    Article  CAS  PubMed  Google Scholar 

  30. Hellmuth J, Slike BM, Sacdalan C, Best J, Kroon E, Phanuphak N, et al. Very early initiation of antiretroviral therapy during acute HIV infection is associated with normalized levels of immune activation markers in cerebrospinal fluid but not in plasma. J Infect Dis. 2019;220(12):1885–91. https://doi.org/10.1093/infdis/jiz030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. •• Burbelo PD, Price RW, Hagberg L, Hatano H, Spudich S, Deeks SG, et al. Anti-human immunodeficiency virus antibodies in the cerebrospinal fluid: evidence of early treatment impact on central nervous system reservoir? J Infect Dis. 2018;217(7):1024–32. https://doi.org/10.1093/infdis/jix662. (This work demonstrated the association between early ART and significant level reductions of anti-HIV antibodies in blood and CSF. Given the level of anti-HIV antibodies correlates with the extent of antigen exposure, the findings suggest that early ART may reduce the long-term immune activation by limiting the size of the HIV reservoir.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeMaster LK, Liu X, VanBelzen DJ, Trinite B, Zheng L, Agosto LM, et al. A subset of CD4/CD8 double-negative T cells expresses HIV proteins in patients on antiretroviral therapy. J Virol. 2015;90(5):2165–79. https://doi.org/10.1128/JVI.01913-15.

    Article  CAS  PubMed  Google Scholar 

  33. Imamichi H, Smith M, Adelsberger JW, Izumi T, Scrimieri F, Sherman BT, et al. Defective HIV-1 proviruses produce viral proteins. Proc Natl Acad Sci USA. 2020;117(7):3704–10. https://doi.org/10.1073/pnas.1917876117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Imamichi H, Dewar RL, Adelsberger JW, Rehm CA, O’Doherty U, Paxinos EE, et al. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci USA. 2016;113(31):8783–8. https://doi.org/10.1073/pnas.1609057113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Handoko R, Chan P, Jagodzinski L, Pinyakorn S, Ubolyam S, Phanuphak N, et al. Minimal detection of cerebrospinal fluid escape after initiation of antiretroviral therapy in acute HIV-1 infection. AIDS. 2021;35(5):777–82. https://doi.org/10.1097/QAD.0000000000002786.

    Article  CAS  PubMed  Google Scholar 

  36. Wendel KA, McArthur JC. Acute meningoencephalitis in chronic human immunodeficiency virus (HIV) infection: putative central nervous system escape of HIV replication. Clin Infect Dis. 2003;37(8):1107–11. https://doi.org/10.1086/378300.

    Article  PubMed  Google Scholar 

  37. Eden A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010;202(12):1819–25. https://doi.org/10.1086/657342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spudich S, Lollo N, Liegler T, Deeks SG, Price RW. Treatment benefit on cerebrospinal fluid HIV-1 levels in the setting of systemic virological suppression and failure. J Infect Dis. 2006;194(12):1686–96. https://doi.org/10.1086/508750.

    Article  CAS  PubMed  Google Scholar 

  39. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50(5):773–8. https://doi.org/10.1086/650538.

    Article  PubMed  Google Scholar 

  40. •• Chan TY, De Zan V, Gregg A, Alagaratnam J, Gerevini S, Antinori A, et al. The symptomatology of cerebrospinal fluid HIV RNA escape: a large case-series. AIDS. 2021;35(14):2341–6. https://doi.org/10.1097/QAD.0000000000002992. (This large case series illustrates the diversity in symptom onset and clinical manifestations of HIV CSF escape.)

    Article  CAS  PubMed  Google Scholar 

  41. Eden A, Nilsson S, Hagberg L, Fuchs D, Zetterberg H, Svennerholm B, et al. Asymptomatic cerebrospinal fluid HIV-1 viral blips and viral escape during antiretroviral therapy: a longitudinal study. J Infect Dis. 2016;214(12):1822–5. https://doi.org/10.1093/infdis/jiw454.

    Article  CAS  PubMed  Google Scholar 

  42. Ferretti F, De Zan V, Gerevini S, Turrini F, Boeri E, Gianotti N, et al. Relapse of symptomatic cerebrospinal fluid HIV escape. Curr HIV/AIDS Rep. 2020;17(5):522–8. https://doi.org/10.1007/s11904-020-00526-x.

    Article  PubMed  Google Scholar 

  43. Mukerji SS, Misra V, Lorenz DR, Uno H, Morgello S, Franklin D, et al. Impact of antiretroviral regimens on cerebrospinal fluid viral escape in a prospective multicohort study of antiretroviral therapy-experienced human immunodeficiency virus-1-infected adults in the United States. Clin Infect Dis. 2018;67(8):1182–90. https://doi.org/10.1093/cid/ciy267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anderson AM, Munoz-Moreno JA, McClernon DR, Ellis RJ, Cookson D, Clifford DB, et al. Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis. 2017;215(1):105–13. https://doi.org/10.1093/infdis/jiw505.

    Article  CAS  PubMed  Google Scholar 

  45. Anderson AM, Tang B, Vaida F, McClernon D, Deutsch R, Cherner M, et al. Low-level HIV RNA in cerebrospinal fluid and neurocognitive performance: a longitudinal cohort study. J Acquir Immune Defic Syndr. 2021;87(5):1196–204. https://doi.org/10.1097/QAI.0000000000002714.

    Article  CAS  PubMed  Google Scholar 

  46. Nightingale S, Michael BD, Fisher M, Winston A, Nelson M, Taylor S, et al. CSF/plasma HIV-1 RNA discordance even at low levels is associated with up-regulation of host inflammatory mediators in CSF. Cytokine. 2016;83:139–46. https://doi.org/10.1016/j.cyto.2016.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mastrangelo A, Turrini F, de Zan V, Caccia R, Gerevini S, Cinque P. Symptomatic cerebrospinal fluid escape. AIDS. 2019;33(Suppl 2):S159–69. https://doi.org/10.1097/QAD.0000000000002266.

    Article  CAS  PubMed  Google Scholar 

  48. •• Lucas SB, Wong KT, Nightingale S, Miller RF. HIV-associated CD8 encephalitis: a UK case series and review of histopathologically confirmed cases. Front Neurol. 2021;12:628296. https://doi.org/10.3389/fneur.2021.628296. (This work illustrates the possible link between CD8 encephalitis and CSF HIV escape through the detailed work in histopathology.)

    Article  PubMed  PubMed Central  Google Scholar 

  49. •• Lustig G, Cele S, Karim F, Derache A, Ngoepe A, Khan K, et al. T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathog. 2021;17(9):e1009871. https://doi.org/10.1371/journal.ppat.1009871. (This work illustrates that latently infected T-cells remain an important source of HIV escape in CSF in addition to the viral latency in residential monocyte/macrophage in the CNS.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Joseph SB, Kincer LP, Bowman NM, Evans C, Vinikoor MJ, Lippincott CK, et al. Human immunodeficiency virus type 1 RNA detected in the central nervous system (CNS) after years of suppressive antiretroviral therapy can originate from a replicating CNS reservoir or clonally expanded cells. Clin Infect Dis. 2019;69(8):1345–52. https://doi.org/10.1093/cid/ciy1066.

    Article  PubMed  Google Scholar 

  51. Gama L, Abreu CM, Shirk EN, Price SL, Li M, Laird GM, et al. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS. 2017;31(1):5–14. https://doi.org/10.1097/QAD.0000000000001267.

    Article  CAS  PubMed  Google Scholar 

  52. Avalos CR, Abreu CM, Queen SE, Li M, Price S, Shirk EN, et al. Brain macrophages in simian immunodeficiency virus-infected, antiretroviral-suppressed macaques: a functional latent reservoir. MBio. 2017;8(4). https://doi.org/10.1128/mBio.01186-17

  53. Stefic K, Chaillon A, Bouvin-Pley M, Moreau A, Braibant M, Bastides F, et al. Probing the compartmentalization of HIV-1 in the central nervous system through its neutralization properties. PLoS One. 2017;12(8):e0181680. https://doi.org/10.1371/journal.pone.0181680.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hsu DC, Silsorn D, Inthawong D, Kuncharin Y, Sopanaporn J, Im-Erbsin R, et al. Impact of analytical treatment interruption on the central nervous system in a simian-HIV model. AIDS. 2019;33(Suppl 2):S189–96. https://doi.org/10.1097/QAD.0000000000002270.

    Article  CAS  PubMed  Google Scholar 

  55. Schreiber-Stainthorp W, Sinharay S, Srinivasula S, Shah S, Wang J, Dodd L, et al. Brain (18)F-FDG PET of SIV-infected macaques after treatment interruption or initiation. J Neuroinflammation. 2018;15(1):207. https://doi.org/10.1186/s12974-018-1244-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E, et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med. 2018;24(7):923–6. https://doi.org/10.1038/s41591-018-0026-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Castagna A, Muccini C, Galli L, Bigoloni A, Poli A, Spagnuolo V, et al. Analytical treatment interruption in chronic HIV-1 infection: time and magnitude of viral rebound in adults with 10 years of undetectable viral load and low HIV-DNA (APACHE study). J Antimicrob Chemother. 2019;74(7):2039–46. https://doi.org/10.1093/jac/dkz138.

    Article  CAS  PubMed  Google Scholar 

  58. Pannus P, Rutsaert S, De Wit S, Allard SD, Vanham G, Cole B, et al. Rapid viral rebound after analytical treatment interruption in patients with very small HIV reservoir and minimal on-going viral transcription. J Int AIDS Soc. 2020;23(2):e25453. https://doi.org/10.1002/jia2.25453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huiting ED, Gittens K, Justement JS, Shi V, Blazkova J, Benko E, et al. Impact of treatment interruption on HIV reservoirs and lymphocyte subsets in individuals who initiated antiretroviral therapy during the early phase of infection. J Infect Dis. 2019;220(2):270–4. https://doi.org/10.1093/infdis/jiz100.

    Article  PubMed  PubMed Central  Google Scholar 

  60. •• De Scheerder MA, Vrancken B, Dellicour S, Schlub T, Lee E, Shao W, et al. HIV rebound is predominantly fueled by genetically identical viral expansions from diverse reservoirs. Cell Host Microbe. 2019;26(3):347–58 e7. https://doi.org/10.1016/j.chom.2019.08.003. (The study outcomes indicate that a successful HIV cure possibly needs to cover a broad range of tissue reservoirs with latent HIV infection.)

  61. Andrade VM, Mavian C, Babic D, Cordeiro T, Sharkey M, Barrios L, et al. A minor population of macrophage-tropic HIV-1 variants is identified in recrudescing viremia following analytic treatment interruption. Proc Natl Acad Sci. 2020;117(18):9981–90.

    Article  CAS  Google Scholar 

  62. Clarridge KE, Blazkova J, Einkauf K, Petrone M, Refsland EW, Justement JS, et al. Effect of analytical treatment interruption and reinitiation of antiretroviral therapy on HIV reservoirs and immunologic parameters in infected individuals. PLoS Pathog. 2018;14(1):e1006792. https://doi.org/10.1371/journal.ppat.1006792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Scheerder MA, Van Hecke C, Zetterberg H, Fuchs D, De Langhe N, Rutsaert S, et al. Evaluating predictive markers for viral rebound and safety assessment in blood and lumbar fluid during HIV-1 treatment interruption. J Antimicrob Chemother. 2020;75(5):1311–20. https://doi.org/10.1093/jac/dkaa003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hellmuth J, Muccini C, Colby DJ, Kroon E, de Souza M, Crowell TA, et al. Central nervous system safety during brief analytic treatment interruption of antiretroviral therapy within 4 human immunodeficiency virus remission trials: an observational study in acutely treated people living with human immunodeficiency virus. Clin Infect Dis. 2021;73(7):e1885–92. https://doi.org/10.1093/cid/ciaa1344.

    Article  CAS  PubMed  Google Scholar 

  65. Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC, et al. Early antiretroviral therapy is associated with lower HIV DNA molecular diversity and lower inflammation in cerebrospinal fluid but does not prevent the establishment of compartmentalized HIV DNA populations. PLoS Pathog. 2017;13(1):e1006112. https://doi.org/10.1371/journal.ppat.1006112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Farhadian SF, Mehta SS, Zografou C, Robertson K, Price RW, Pappalardo J, Chiarella J, Hafler DA, Spudich SS. Single-cell RNA sequencing reveals microglia-like cells in cerebrospinal fluid during virologically suppressed HIV. JCI Insight. 2018;3(18):e121718. https://doi.org/10.1172/jci.insight.121718.

  67. McMahon JH, Zerbato JM, Lau JSY, Lange JL, Roche M, Tumpach C, et al. A clinical trial of non-invasive imaging with an anti-HIV antibody labelled with copper-64 in people living with HIV and uninfected controls. EBioMedicine. 2021;65:103252. https://doi.org/10.1016/j.ebiom.2021.103252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vera DB, Schulte B, Henrich T, Flavell R, Seo Y, Abdelhafez Y, et al. First-in-human total-body PET imaging of HIV with 89Zr-VRC01 on the EXPLORER. J Nucl Med 2020;61(supplement 1):545.

  69. VanBrocklin H, Vera DB, Schulte B, Flavell R, Seo Y, Levi J, et al. Imaging viral load and T cell activation in HIV: tools for cure development. J Nucl Med 2020;61(supplement 1):540.

  70. Guglielmetti C, Levi J, Huynh TL, Tiret B, Blecha J, Tang R, VanBrocklin H, Chaumeil MM. Longitudinal Imaging of T Cells and Inflammatory Demyelination in a Preclinical Model of Multiple Sclerosis Using 18F-FAraG PET and MRI. J Nucl Med. 2022;63(1):140–6. https://doi.org/10.2967/jnumed.120.259325.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Spudich.

Ethics declarations

Conflict of Interest

Phillip Chan declares that he has no conflict of interest. Serena Spudich reports grants from NIH-NIMH, NINDS and NIDA, during the conduct of the study; non-financial support from ViiV Healthcare, Inc., outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, P., Spudich, S. HIV Compartmentalization in the CNS and Its Impact in Treatment Outcomes and Cure Strategies. Curr HIV/AIDS Rep 19, 207–216 (2022). https://doi.org/10.1007/s11904-022-00605-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-022-00605-1

Keywords

Navigation